Journal of Optoelectronics · Laser, Volume. 33, Issue 3, 264(2022)

An image semantic segmentation method effectively fusing multi-scale features

XU Guangyu* and TANG Weijian
Author Affiliations
  • [in Chinese]
  • show less
    References(13)

    [2] [2] XU C H,SHI C,CHEN Y N.End-to-end dilated convolution network for document image semantic segmentation[J].Journal of Central South University,2021,28(6):1765-1774.

    [4] [4] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10) [2021-06-07]. https://arxiv.org/abs/1409.1556v6.

    [5] [5] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 27-30,2016,Las Vegas,NV,USA.Washington DC:IEEE Computer Society,2016,770-778.

    [6] [6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.

    [7] [7] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651.

    [8] [8] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.

    [9] [9] ZHANG Z L,ZHANG X Y,PENG C,et al. Exfuse: enhancing feature fusion for semantic segmentation[C]//The 15th European Conference on Computer Vision,September 8-14,2018,Munich,Germany.Berlin:Springer-Verlag,2018:273-288.

    [10] [10] LIN G S,MILAN A,SHEN C H,et al. RefineNet:multi-path refinement networks for high-resolution semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA.Washington DC:IEEE,2017:1063-1069.

    [12] [12] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.

    [13] [13] ZHAO H S,SHI J P,QI X J,et al.Pyramid scene parsing network[C]//IEEE Conference on Computer Vision and Pattern Recognition,July 21-26,2017,Honolulu,HI,USA.Washington DC:IEEE, 2017:2881-2890.

    [14] [14] CHEN L C,ZHU Y K,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision,September 8-14,2018,Munich,Germany.Berlin:Springer,2018:833-851.

    [15] [15] PENG C,ZHANG X Y,YU G,et al. Large kernel matters: improve semantic segmentation by global convolutional network[C]//IEEE Conference on Computer Vision and Pattern Recognition,July 21-26, 2017,Honolulu,HI,USA.Washington DC:IEEE,2017:1743-1751.

    [16] [16] YU C Q,WANG J B,PENG C,et al.Learning a discriminative feature network for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition,June 18-23,2018,Salt Lake City,UT,USA. Washington DC:IEEE,2018:1857-1866.

    Tools

    Get Citation

    Copy Citation Text

    XU Guangyu, TANG Weijian. An image semantic segmentation method effectively fusing multi-scale features[J]. Journal of Optoelectronics · Laser, 2022, 33(3): 264

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jun. 7, 2021

    Accepted: --

    Published Online: Oct. 9, 2024

    The Author Email: XU Guangyu (xgy761220@163.com)

    DOI:10.16136/j.joel.2022.03.0392

    Topics