Acta Photonica Sinica, Volume. 51, Issue 9, 0914004(2022)
210~250 nm Tunable Narrow Linewidth Ti:Sapphire Laser
[1] MAO J X, WALSH P, KROLL P et al. Simulation of vacuum ultraviolet absorption spectra: paraffin, isoparaffin, olefin, naphthene, and aromatic hydrocarbon class compounds[J]. Applied Spectroscopy, 74, 72-80(2020).
[2] GHOTBI M, TRABS P, BEUTLER M. Generation of high-energy, sub-20-fs pulses in the deep ultraviolet by using spectral broadening during filamentation in argon[J]. Optics Letters, 36, 463-465(2011).
[3] FAN Ruilan, BAO Fengrong, WANG Yongsheng. Study on ultraviolet spectroscopy of halogenated benzoyl ferrocene[J]. Spectroscopy and Spectral Analysis, 25, 601-603(2005).
[4] MENG Zhaorui, GAO Ning. Ultraviolet spectroscopy analysis of organic compounds[J]. Western Resources, 6, 179-182(2017).
[5] CHEN Guofu, WANG Yishan, YU Lianjun et al. Experimental study on pulse oscillation of femtosecond ultraviolet laser[J]. Acta Photonica Sinica, 30, 11-14(2001).
[6] JUNGBLUTH B, WUEPPEN J, VIERKOETTER M et al. High repetition rate Ti:Sapphire laser system with nanosecond pulses and a tunability from the UV to the NIR[C](2006).
[7] ZHU J F, LING W J, WANG Z H et al. High-energy picosecond near-vacuum ultraviolet pulses generated by sum-frequency mixing of an amplified Ti:sapphire laser[J]. Applied Optics, 46, 6228-6231(2007).
[8] ZHANG S J, BO Y, ZHANG F F et al. Picosecond 175~ 210 nm tunable deep-ultraviolet laser[C](2013).
[9] XU C, DAI S B, GUO C et al. A high-pulse-energy high-beam-quality tunable Ti:Sapphire laser using a prism-dispersion cavity[J]. Chinese Physics Letters, 34, 034206(2017).
[10] SULAIMAN A H, KADIR M Z A, YUSOFF N M et al. Broad bandwidth SOA-based multiwavelength laser incorporating a bidirectional Lyot filter[J]. Chinese Optics Letters, 16, 090603(2018).
[11] ZHAO Q, PEI L, WU L Y et al. Wide tuning range and high OSNR self-seeded multi-wavelength Brillouin-erbium fiber laser based on a Lyot filter[J]. Applied Optics, 57, 10474-10479(2018).
[12] GUAN X F, WANG J W, ZHANG Y Z et al. Self-Q-switched and wavelength-tunable tungsten disulfide-based passively Q-switched Er:Y2O3 ceramic lasers[J]. Photon Research, 6, 830-836(2018).
[13] SUN X J, WEI J, WANG W Z et al. Realization of a continuous frequency-tuning Ti:sapphire laser with an intracavity locked etalon[J]. Chinese Optics Letters, 13, 071401(2015).
[14] WEI J, CAO X C, JIN P X et al. Diving angle optimization of BRF in a single-frequency continuous-wave wideband tunable titanium:sapphire laser[J]. Optics Express, 29, 6714-6725(2021).
[15] LIU X, HUANG H T, ZHU H Y et al. Widely tunable, narrow linewidth Tm: YAG ceramic laser with a volume Bragg grating[J]. Chinese Optics Letters, 13, 061404(2015).
[16] HEMMER M, JOLY Y, GLEBOV L et al. Volume bragg grating assisted broadband tunability and spectral narrowing of Ti:Sapphire oscillators[J]. Optics Express, 17, 8212-8219(2009).
[17] DAI S T, JIANG T, WU H C et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry[J]. Optics Letters, 45, 2291-2294(2020).
[18] WANG R, WANG N, TENG H et al. High-power tunable narrow-linewidth Ti:sapphire laser at repetition rate of 1kHz[J]. Applied Optics, 51, 5527-5530(2012).
[19] NIKITIN D G, BYALKOVSKIY O A, VERSHNIN O I et al. Sum frequency generation of UV laser radiation at 266nm in LBO crystal[J]. Optics Letters, 41, 1660-1663(2016).
[20] PHILLIPS J, BANERJEE S, ERTEL K et al. Stable high-energy, high-repetition-rate, frequency doubling in a large aperture temperature-controlled LBO at 515 nm[J]. Optics Letters, 45, 2946-2949(2020).
[21] SHIMADA T, NAGASHIMA K, KOYAMA S et al. Fabrication of walk-off compensating BBO devices with multiple thin plates using room-temperature bonding[C](2017).
Get Citation
Copy Citation Text
Meng LI, Xin MENG, Jinming HU, Jingjing CHENG, Guilin MAO. 210~250 nm Tunable Narrow Linewidth Ti:Sapphire Laser[J]. Acta Photonica Sinica, 2022, 51(9): 0914004
Category:
Received: Feb. 28, 2022
Accepted: Jun. 8, 2022
Published Online: Oct. 26, 2022
The Author Email: Jingjing CHENG (chengjingjing_5@163.com)