Optoelectronic Technology, Volume. 42, Issue 4, 248(2022)

Development of Field Assisted Photocathode

Jiangnan YUE1, Yuqing LI1, Xinlong CHEN2, Pengxiao XU2, Wenjuan DENG1, Xincun PENG1, and Jijun ZOU1、*
Author Affiliations
  • 1State Key Laboratory of Nuclear Resources and Environment, School of Mechanical and Electronic Engineering, East China University of Technology, Nanchang 33003,CHN
  • 2The 55th Research Institute of China Electronics Technology Group Corporation,Nanjing 10016,CHN
  • show less
    References(17)

    [1] James L W, Uebbing J J. Long‐wavelength threshold of CS2O‐coated photoemitters[J]. Applied Physics Letters, 16, 370-370(1970).

    [2] Fisher D G, Enstrom R E, Escher J S et al. Photoelectron surface escape probability of (Ga, In) As: Cs–O in the 0.9 to [inverted lazy s] 1.6 μm range[J]. Journal of Applied Physics, 43, 3815-3823(1972).

    [3] Simon R E, Spicer W E. Photoemission from Si induced by an internal electric field[J]. Physical Review, 119, 621(1960).

    [4] Bell R L, James L W, Moon R L. Transferred electron photoemission from InP[J]. Applied Physics Letters, 25, 645-646(1974).

    [5] Gregory P E, Escher J S, Saxena R R et al. Field‐assisted photoemission to 2.1 microns from a Ag/p‐In0. 77Ga0. 23As photocathode[J]. Applied Physics Letters, 36, 639-640(1980).

    [6] Escher J S, Bell R L, Gregory P E et al. Field-assisted semiconductor photoemitters for the 1~2 μm range[J]. IEEE Transactions on Electron Devices, 27, 1244-1250(1980).

    [7] Niigaki M, Hirohata T, Suzuki T et al. Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction[J]. Applied Physics Letters, 71, 2493-2495(1997).

    [8] Niigaki M, Hirohata T, Mimura H. Room temperature photoemission up to a wavelength threshold of 2.3 μm from n+-InAs0. 4P0. 6/p--InAs0. 4P0. 6/p--ln0. 7Ga0. 3As field-assisted photocathode[J]. Applied Physics Express, 7, 112201(2014).

    [21] Parker T R, Phillips C C, May P G. Electrically gated field-assisted photoemission from caesiated metal-(AlGa) As heterostructures[J]. Semiconductor Science and Technology, 10, 547(1995).

    [22] Milnes A G, Feucht D L. Heterojunction photocathode concepts[J]. Applied Physics Letters, 19, 383-385(1971).

    [23] Escher J S, Fairman R D, Antypas G A et al. Field-assisted photoemission from an InP/InGaAsP/InP cathode[J]. Critical Reviews in Solid State and Material Sciences, 5, 577-583(1975).

    [24] Costello K A, Davis G A, Weiss R E et al. Transferred electron photocathode with greater than 5% quantum efficiency beyond 1 micron[C], 1449, 40-50(1991).

    [25] Musatov A L, Filippov S L, Izraelyants K R et al. Field-assisted photoemission from semiconductor heterostructures up to[C], 1982, 122-126(1).

    [26] Li Jinmin, Hou Xun, Guo Lihui. Theoretical calculation of dark current for a field-assisted semiconductor photocathode[J]. Journal of Physics D: Applied Physics, 22, 1544(1989).

    [27] Niigaki M, Hirohata T, Akahori W et al. Novel field-assisted photocathodes with nanoscale grating antennas[J]. Journal of Vacuum Science & Technology B, 28, C2D-4(2010).

    [28] Nolle E L, Prokhorov A M, Schelev M Y et al. Field-assisted semiconductor photocathodes for streak tubes[J]. Optical Engineering, 37, 2233-2237(1998).

    [29] Smirnov K J, Davydov V V, Glagolev S F et al. Photocathodes for near infrared range devices based on InP/InGaAs heterostructures[C], 1038(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jiangnan YUE, Yuqing LI, Xinlong CHEN, Pengxiao XU, Wenjuan DENG, Xincun PENG, Jijun ZOU. Development of Field Assisted Photocathode[J]. Optoelectronic Technology, 2022, 42(4): 248

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Study Report

    Received: Jun. 15, 2022

    Accepted: --

    Published Online: Dec. 23, 2022

    The Author Email: ZOU Jijun (jjzou@ecut.edu.cn)

    DOI:10.19453/j.cnki.1005-488x.2022.04.002

    Topics