Optoelectronic Technology, Volume. 42, Issue 4, 248(2022)
Development of Field Assisted Photocathode
[1] James L W, Uebbing J J. Long‐wavelength threshold of CS2O‐coated photoemitters[J]. Applied Physics Letters, 16, 370-370(1970).
[2] Fisher D G, Enstrom R E, Escher J S et al. Photoelectron surface escape probability of (Ga, In) As: Cs–O in the 0.9 to [inverted lazy s] 1.6 μm range[J]. Journal of Applied Physics, 43, 3815-3823(1972).
[3] Simon R E, Spicer W E. Photoemission from Si induced by an internal electric field[J]. Physical Review, 119, 621(1960).
[4] Bell R L, James L W, Moon R L. Transferred electron photoemission from InP[J]. Applied Physics Letters, 25, 645-646(1974).
[5] Gregory P E, Escher J S, Saxena R R et al. Field‐assisted photoemission to 2.1 microns from a Ag/p‐In0. 77Ga0. 23As photocathode[J]. Applied Physics Letters, 36, 639-640(1980).
[6] Escher J S, Bell R L, Gregory P E et al. Field-assisted semiconductor photoemitters for the 1~2 μm range[J]. IEEE Transactions on Electron Devices, 27, 1244-1250(1980).
[7] Niigaki M, Hirohata T, Suzuki T et al. Field-assisted photoemission from InP/InGaAsP photocathode with p/n junction[J]. Applied Physics Letters, 71, 2493-2495(1997).
[8] Niigaki M, Hirohata T, Mimura H. Room temperature photoemission up to a wavelength threshold of 2.3 μm from n+-InAs0. 4P0. 6/p--InAs0. 4P0. 6/p--ln0. 7Ga0. 3As field-assisted photocathode[J]. Applied Physics Express, 7, 112201(2014).
[21] Parker T R, Phillips C C, May P G. Electrically gated field-assisted photoemission from caesiated metal-(AlGa) As heterostructures[J]. Semiconductor Science and Technology, 10, 547(1995).
[22] Milnes A G, Feucht D L. Heterojunction photocathode concepts[J]. Applied Physics Letters, 19, 383-385(1971).
[23] Escher J S, Fairman R D, Antypas G A et al. Field-assisted photoemission from an InP/InGaAsP/InP cathode[J]. Critical Reviews in Solid State and Material Sciences, 5, 577-583(1975).
[24] Costello K A, Davis G A, Weiss R E et al. Transferred electron photocathode with greater than 5% quantum efficiency beyond 1 micron[C], 1449, 40-50(1991).
[25] Musatov A L, Filippov S L, Izraelyants K R et al. Field-assisted photoemission from semiconductor heterostructures up to[C], 1982, 122-126(1).
[26] Li Jinmin, Hou Xun, Guo Lihui. Theoretical calculation of dark current for a field-assisted semiconductor photocathode[J]. Journal of Physics D: Applied Physics, 22, 1544(1989).
[27] Niigaki M, Hirohata T, Akahori W et al. Novel field-assisted photocathodes with nanoscale grating antennas[J]. Journal of Vacuum Science & Technology B, 28, C2D-4(2010).
[28] Nolle E L, Prokhorov A M, Schelev M Y et al. Field-assisted semiconductor photocathodes for streak tubes[J]. Optical Engineering, 37, 2233-2237(1998).
[29] Smirnov K J, Davydov V V, Glagolev S F et al. Photocathodes for near infrared range devices based on InP/InGaAs heterostructures[C], 1038(2018).
Get Citation
Copy Citation Text
Jiangnan YUE, Yuqing LI, Xinlong CHEN, Pengxiao XU, Wenjuan DENG, Xincun PENG, Jijun ZOU. Development of Field Assisted Photocathode[J]. Optoelectronic Technology, 2022, 42(4): 248
Category: Study Report
Received: Jun. 15, 2022
Accepted: --
Published Online: Dec. 23, 2022
The Author Email: ZOU Jijun (jjzou@ecut.edu.cn)