Laser & Optoelectronics Progress, Volume. 58, Issue 10, 1011001(2021)

Progress and Prospect for Ghost Imaging of Moving Objects

Weitao Liu1,2、*†, Shuai Sun1,2、†, Hongkang Hu1,2, and Huizu Lin1,2
Author Affiliations
  • 1Department of Physics, College of Liberal Arts and Science, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    References(106)

    [1] Li C Z, Huang M Q, Chen P X et al. Quantum communication and quantum compupation[M](2000).

    [2] Klyshko D N. Photon and nonlinear optics[M](1988).

    [6] Deng C J, Pan L, Wang C L et al. Performance analysis of ghost imaging lidar in background light environment[J]. Photonics Research, 5, 431-435(2017).

    [8] Wu Y B, Yang Z H, Tang Z L. Experimental study on anti-disturbance ability of underwater ghost imaging[J]. Laser & Optoelectronics Progress, 58, 0611002(2021).

    [9] Morris P A, Aspden R S, Bell J E C et al. Imaging with a small number of photons[J]. Nature Communications, 6, 5913(2015).

    [15] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 117, 113901(2016).

    [16] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [24] Zhao J P, Yiwen E, Williams K et al. Spatial sampling of terahertz fields with sub-wavelength accuracy via probe-beam encoding[J]. Light: Science & Applications, 8, 55(2019).

    [25] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [27] Huang H, Zhou C, Tian T et al. High-quality compressive ghost imaging[J]. Optics Communications, 412, 60-65(2018).

    [28] Kang Y, Yao Y P, Kang Z H et al. Performance analysis of compressive ghost imaging based on different signal reconstruction techniques[J]. Journal of the Optical Society of America A, 32, 1063-1067(2015).

    [29] Shi X H, Huang X W, Nan S Q et al. Image quality enhancement in low-light-level ghost imaging using modified compressive sensing method[J]. Laser Physics Letters, 15, 045204(2018).

    [32] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019).

    [35] Pan Z L, Zhang L H. Optical cryptography-based temporal ghost imaging with chaotic laser[J]. IEEE Photonics Technology Letters, 29, 1289-1292(2017).

    [37] Ma S, Liu Z T, Wang C L et al. Ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Express, 27, 13219-13228(2019).

    [38] Ma S, Hu C Y, Wang C L et al. Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning[J]. Optics Communications, 448, 89-92(2019).

    [40] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 101, 101108(2012).

    [41] Zhao S M, Wang L, Liang W Q et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 353, 90-95(2015).

    [42] Fuller P W W. An introduction to high speed photography and photonics[J]. The Imaging Science Journal, 57, 293-302(2009).

    [43] Bennink R S, Bentley S J, Boyd R W. “Two-Photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002).

    [44] Valencia A, Scarcelli G, D'Angelo M et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 94, 063601(2005).

    [48] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [49] Hardy N D, Shapiro J H. Computational ghost imaging versus imaging laser radar for three-dimensional imaging[J]. Physical Review A, 87, 023820(2013).

    [51] Gong W L, Zhao C Q, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016).

    [52] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [53] Garrison J, Chiao R. Quantum optics[M](2008).

    [56] Shih Y. The physics of ghost imaging[M]. //Classical, Semi-classical and Quantum Noise, 169-222(2011).

    [60] Scully M O, Zubairy M S. Quantum optics[M](1997).

    [61] Khamoushi S M, Nosrati Y, Tavassoli S H. Sinusoidal ghost imaging[J]. Optics Letters, 40, 3452-3455(2015).

    [63] El-Desouki M, Deen M J, Fang Q Y et al. CMOS image sensors for high speed applications[J]. Sensors, 9, 430-444(2009).

    [64] Li Z Y, Zgadzaj R, Wang X M et al. Single-shot tomographic movies of evolving light-velocity objects[J]. Nature Communications, 5, 3085(2014).

    [65] Suzuki T, Isa F, Fujii L et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering[J]. Optics Express, 23, 30512-30522(2015).

    [77] Sayyah K, Efimov O, Patterson P et al. Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers[J]. Optics Express, 23, 19405-19416(2015).

    [80] Fukui T, Kohno Y, Tang R et al. Single-pixel imaging through multimode fiber using silicon optical phased array chip[C]. //Optical Fiber Communication Conference (OFC) 2020, San Diego, California. Washington, D.C.: OSA, 1(2020).

    [81] Kameyama Y, Ikeda K, Koyama O et al. Single-pixel Imaging using a Multi-core Fiber[C]. //2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), July 7-11, 2019. Fukuoka, Japan., 1-3(2019).

    [82] Sun S, Liu W T, Lin H Z et al. Multi-scale adaptive computational ghost imaging[J]. Scientific Reports, 6, 37013(2016).

    [83] Chan K W C, O'Sullivan M N, Boyd R W. High-order thermal ghost imaging[J]. Optics Letters, 34, 3343-3345(2009).

    [84] Phillips D B, Sun M J, Taylor J M et al. Adaptive foveated single-pixel imaging with dynamic supersampling[J]. Science Advances, 3, e1601782(2017).

    [90] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [94] Hu H K, Sun S, Lin H Z et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects[J]. Optics Express, 28, 37284-37293(2020).

    [95] Li E R, Bo Z W, Chen M L et al. Ghost imaging of a moving target with an unknown constant speed[J]. Applied Physics Letters, 104, 251120(2014).

    [96] Li X H, Deng C J, Chen M L et al. Ghost imaging for an axially moving target with an unknown constant speed[J]. Photonics Research, 3, 153-157(2015).

    [99] Shi D F, Yin K X, Huang J et al. Fast tracking of moving objects using single-pixel imaging[J]. Optics Communications, 440, 155-162(2019).

    [102] Ota S, Horisaki R, Kawamura Y et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    [103] Zhang C, Gong W L, Han S S. Improving imaging resolution of shaking targets by Fourier-transform ghost diffraction[J]. Applied Physics Letters, 102, 021111(2013).

    CLP Journals

    [1] LIN Huizu, LIU Weitao, SUN Shuai, DU Longkun, CHANG Chen, LI Yuegang. Progress of ghost imaging algorithms[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863

    Tools

    Get Citation

    Copy Citation Text

    Weitao Liu, Shuai Sun, Hongkang Hu, Huizu Lin. Progress and Prospect for Ghost Imaging of Moving Objects[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Jan. 20, 2021

    Accepted: Mar. 25, 2021

    Published Online: Apr. 6, 2021

    The Author Email: Weitao Liu (wtliu@nudt.edu.cn)

    DOI:10.3788/LOP202158.1011001

    Topics