Chinese Optics Letters, Volume. 22, Issue 2, 020041(2024)

Photonic integrated optical phased arrays and their applications [Invited]

Zhipeng Ma1...2, Yuanjian Wan1,2, Hang Liang1,2, Yao Fu1,2, Guobiao Tang1,2, Xiaoyang Zhao1,2, Shiao Zhao1,2, Haibo Kuang1,2, Yu Zhang1,2,*, and Jian Wang12,** |Show fewer author(s)
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Optics Valley Laboratory, Wuhan 430074, China
  • show less
    Figures & Tables(26)
    Schematic of the 1D OPA and far-field pattern[3].
    Optical microscope image of 1D 64-channel OPA[4].
    3D view of the 1.5D OPA[5]. The inset shows the far-field image.
    Layout of the fully integrated OPA chip by UCSB[6].
    (a) OPA PIC by MIT[8]. (b) Photograph of packaged OPA LiDAR[8]. (c) Optical micrograph of coherent solid-state LiDAR[7].
    (a) Schematic of the polarization multiplexed OPA[9]. (b) 3D view of the proposed bi-directional and dual polarization multiplexed OPA[11].
    (a) Layout of integrated silicon OPA chip[12]. (b) SEM image of the 3D interlayer coupler.
    (a) Optical micrograph of the wide steering angle SiN-Si dual-layer OPA by JLU[14]. (b) Optical microscope image of SiN-Si dual-layer OPA by CAS[13].
    (a) Schematic of the integrated LN OPA[15]. (b) Optical image of the LN OPA chip wire bonded to a PCB. (c) Scheme of the metasurface-integrated OPA[16].
    (a) Schematic illustration of the 8 × 8 active OPA by MIT[17]. The phase of each pixel is continuously tuned by thermo-optic effect through an integrated doped heater.
    (a) Structure of the implemented 8 × 8 OPA with 16 phase shifters[18]. (b) Structures of the grating couplers and directional couplers. (c) Microphotograph of the implemented 8 × 8 OPA chip.
    (a) Schematic of the solid-state 3D imaging LiDAR[19]. (b) Schematic of a receiver block in receiver focal plane array (FPA).
    (a) Perspective view schematic of the focal plane switch array (FPSA)[20]. (b) Schematic of a 1D beam scanner. (c) Top-view schematic of the focal plane switch array design. (d) Schematics of the MEMS optical switches and grating antennas in the on/off states.
    Schematics of different phase modulators. (a) Directly resistor heated TO phase modulator. (b) Resistor heated TO phase modulator. (c) Carrier injection (p-i-n) EO phase modulator. (d) Carrier depletion (p-n) EO phase modulator.
    (a) The cross section and (b) schematic of the proposed uniform propagation constant SiN/Si grating[29]. (c) Schematic of the SiN apodized grating antennas[30].
    (a) Schematic of the grating antenna with DBR[12]. Simulated grating emission profile (b) with and (c) without bottom DBRs. (d) Schematic of unidirectional WGA by MIT. The figure shows multiple reflections in the silicon substrate and overlying photonic layer stack[31].
    Schematic of the single slow-light grating antenna[32].
    Schematic of high-SLSR Gaussian power distribution OPA[39].
    (a) Fully packaged coherent OPA chip on the PCB[12]. (b) Composite IR image for the scanning spots. (c) Photo of the solid-state OPA[44]. (d) 2-D beam steering displaying the ‘SJTU’ logo.
    (a) Integrated actively steerable OPA chip for optical wireless communication[45]. (b) Nonuniform-space OPA for optical wireless communication[46].
    (a) Nanophotonic projection system[47]. (b) Schematic of GI system using an integrated OPA chip[48].
    (a) Schematic of an implantable probe based on reconfigurable nanophotonics[50]. (b) Schematic of the OPA neural probe connected to the scanning system[51].
    (a) On-chip optical vortex lattice emitter[52]. (b) On-chip Bessel–Gaussian beam generator[53].
    • Table 1. The Performance Comparison of Some OPAs

      View table
      View in Article

      Table 1. The Performance Comparison of Some OPAs

      ReferencesYearArray SizePlatformDimensionSteering Angle (°)Beam Resolution (°)Pitch (µm)
      [5]20091 × 16SOI1.5D2.3 × 14.12.5 × 2.72
      [21]20111 × 16SOI1.5D23 × 6.71.27 × 2.85
      [6]20151 × 32III–V/Si1.5D23 × 3.61 × 0.64
      [7]20171 × 32SOI1.5D46 × 360.8 × 0.162
      [22]20191 × 512SOI1.5D56 × 150.041.65
      [12]20191 × 120SOI1.5D40 × 3.3N/A1.3
      [23]20201 × 512SOI1.5D70 × 60.15 × 0.081.3
      [13]20201 × 1024SiN-on-SOI1.5D96 × 142.3 × 2.81.65
      [15]20231 × 16LNOI1.5D24 × 82 × 0.63
      [24]20104 × 4SOI2D1.59.6 × 4.887.2 × 72.2
      [17]201364 × 64SOI2D6 × 6N/A9 × 9
      [25]20158 × 8SOI2D1.6 × 1.6N/A33 × 33
      [18]20198 × 8SOI2D7 × 7N/A11 × 11
    • Table 2. The Contrast of Phase Modulators for OPAs

      View table
      View in Article

      Table 2. The Contrast of Phase Modulators for OPAs

      ReferencesYearL (μm)P (mW)TypeBandwidth (Hz)
      [4]202030030TO∼5000
      [5]2009/8.2TO/
      [6]2015/160EO5 × 107
      [14]202170000.0018EO/
      [17]2013/8.5TO/
      [15]202310,000/EO4.2 × 109
    • Table 3. Link Budget

      View table
      View in Article

      Table 3. Link Budget

      ElementLoss TypeTypical Value (dB)EfficiencyPower (mW)
      Edge couplerCoupling loss263%63
      WaveguideTransmission loss263%40
      1 × 16 splitterExcess loss180%32
      EO p-i-n modulatorInsertion loss350%16
      Grating arrayExcess loss180%12.8
      Grating arrayDownward emission loss350%6.4
      TotalLink loss126.4%6.4
    Tools

    Get Citation

    Copy Citation Text

    Zhipeng Ma, Yuanjian Wan, Hang Liang, Yao Fu, Guobiao Tang, Xiaoyang Zhao, Shiao Zhao, Haibo Kuang, Yu Zhang, Jian Wang, "Photonic integrated optical phased arrays and their applications [Invited]," Chin. Opt. Lett. 22, 020041 (2024)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue: SPECIAL ISSUE ON THE 20TH ANNIVERSARY OF WUHAN NATIONAL LABORATORY FOR OPTOELECTRONICS (WNLO)

    Received: Nov. 2, 2023

    Accepted: Jan. 22, 2024

    Published Online: Mar. 1, 2024

    The Author Email: Yu Zhang (yuzhang87@hust.edu.cn), Jian Wang (jwang@hust.edu.cn)

    DOI:10.3788/COL202422.020041

    CSTR:32184.14.COL202422.020041

    Topics