Optics and Precision Engineering, Volume. 20, Issue 2, 277(2012)
CO laser frequency mixing in nonlinear crystals ZnGeP2 and GaSe
[1] [1] IONIN A A. Gas lasers[D]. Florida: CRC Press-Taylor and Francis Group, Boca Raton, 2007.
[2] [2] BASOV N G, IONIN A A, KOTKOV A A, et al.. Pulsed laser operating on the first vibrational overtone of the CO molecule in the 2.5~4.2 μm range: I. Multifrequency lasing[J]. Quantum Electronics, 2000, 30(9): 771-777.(in Russian)
[3] [3] BASOV N G, IONIN A A, KOTKOV A A, et al.. Pulsed laser operating on the first overtone of the CO molecule in the 2.5~4.2 μm range: II. Frequency-selective lasing[J]. Quantum Electronics, 2000, 30(10): 859-866.
[4] [4] BASOV N G, HAGER G D, IONIN A A, et al.. Efficient pulsed first-overtone CO laser operating within the spectral range of 2.5~4.2 μm[J]. IEEE J. Quant. Electron, 2000, 36(7): 810-823.
[5] [5] ANDREEV YU M, VOEVODIN V G,GRYBEN-YUKOV A I, et al.. Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2[J]. Sov. J. Quant. Electron, 1984, 14(8): 1021-1022.
[6] [6] BOYD G D, GANDRUB W B, BUEHLER E. Phase-matched up conversion of 10.6 μm radiation in ZnGeP2[J]. Appl. Phys.Lett, 1971, 18(10): 446-448.
[7] [7] BOYD G D, BRIDGES T J, PATEL C K N, et al.. Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2[J]. J. Appl. Phys. Lett, 1972, 21(11): 553-555.
[8] [8] ANDREEV Y M, BARANOV V Y, VOEVODIN V G, et al.. Efficient generation of the second harmonic of a nanosecond CO2 laser radiation pulse[J]. Sov. J. Quant. Electron, 1987, 17(11): 1435-1436.
[9] [9] ANDREEV YU M, VEDERNIKOVA T V, BETIN A A, et al.. Conversion of CO2 and CO laser radiations in a ZnGeP2 crystal to the 2.3-3.1 μm spectral range[J]. Sov. J. Quant. Electron, 1985, 15(7): 1014-1015.
[10] [10] ANDREEV Y M, BELYKH A D, VOEVODIN V G, et al.. Doubling of the emission frequency of CO lasers with an efficiency of 3%[J]. Sov. J. Quant. Electron, 1987, 17(4): 490-491.
[11] [11] ANDREEV YU M,VOEVODIN V G, GRIBENY-UKOV A I, et al.. Mixing of frequencies of CO2 and CO lasers in ZnGeP2 crystals[J]. Sov. J. Quant. Electron, 1987, 17(6): 748-749.
[12] [12] ANDREEV Y M, BELYH A D, VOEVODIN V G, et al.. Frequency conversion of combined СО: СО2 laser emission[J]. IX All over the Russia Symp. on Laser and Acoust. Sounding of the Atmosph, Thesis book, Tomsk, Russia, 1987, 1: 403.
[13] [13] ABDULAVE G B, KULEVSKII L A, PROKHOR-OV A M, et al.. GaSe, a new effective material for nonlinear optics[J].JETP Letters,1972, 16(3): 90-92.
[14] [14] ANDREEV Y M, BOVDEY S N, GEIKO P P, et al.. Multi-frequency laser source of 2.6~3.2 μm range[J]. Optica Atmosfery, 1988, 1(1): 124.
[15] [15] VETOSHKIN S V, IONIN A A, KLIMACHEV YU M, et al.. Multiline laser probing of CO: He,CO: N2, and CO: O2 active media in a wide-aperture pulsed amplifier[J]. J. Russian Laser Research, 2006, 27(1): 33-69.
[16] [16] IONIN A A, KLIMACHEV Y M, KOTKOV A A, et al.. Carbon monoxide laser emitting nanosecond pulses with 10 MHz repetition rate[J]. Optics Communications, 2009, 282(2): 294 -299.
[17] [17] MCGEOCH W M. Efficient generation at 4.8 μm by doubling of mode-locked CO2 laser radiation[J]. SPIE, 1993, 1871: 62-72.
[18] [18] SHI W, DING Y J, SCHUNEMANN P G. Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers[J]. Optics Communications, 2004, 233(1-3): 183 -189.
[19] [19] VODOPYANOV K L, KULEVSKII L A. New dispersion relationships for GaSe in the 0.65~18 μm spectral region[J]. Optics Communications, 1995,118(3-4): 375-378.
Get Citation
Copy Citation Text
ZHANG Lai-ming, XIE Ji-jiang, GUO Jin, CHEN Fei, JIANG Ke, ANDREEV YU M, IONIN A A, KINYAEVSKIY I O, KLIMACHEV YU M, KOZLOV A YU, KOTKOV A A, LANSKII G V, SHAIDUKO A V. CO laser frequency mixing in nonlinear crystals ZnGeP2 and GaSe[J]. Optics and Precision Engineering, 2012, 20(2): 277
Category:
Received: Mar. 20, 2011
Accepted: --
Published Online: Mar. 6, 2012
The Author Email: ZHANG Lai-ming (lightcoming@163.com)