Journal of Synthetic Crystals, Volume. 51, Issue 9-10, 1703(2022)
Research Progress on Indium Selenide Crystals and Optoelectronic Devices
[1] [1] ALLEN M J, TUNG V C, KANER R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.
[3] [3] CHHOWALLA M, JENA D, ZHANG H. Two-dimensional semiconductors for transistors[J]. Nature Reviews Materials, 2016, 1: 16052.
[5] [5] DAI M J, GAO C F, NIE Q F, et al. Properties, synthesis, and device applications of 2D layered InSe[J]. Advanced Materials Technologies, 2022: 2200321.
[6] [6] MANCHESTER U O. New ultra-thin semiconductor could extend life of Moore's law[J]. Phys Org, 2016.
[7] [7] SCHUBERT K, DRRE E, GNZEL E. Kristallchemische ergebnisse an phasen aus B-elementen[J]. Naturwissenschaften, 1954, 41(19): 448.
[8] [8] SUGAIKE S. Synthesis, crystal lattices and some electrical properties of indium tellurides and selenides[J]. Mineralogical Journal, 1957, 2(2): 63-77.
[9] [9] SEMILETOV S. Electronografic determination of the InSe structure[J]. Kristallografiya, 1958, 3 (3): 288-292.
[10] [10] RIGOULT J, RIMSKY A, KUHN A. Refinement of the 3R γ-indium monoselenide structure type[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1980, 36(4): 916-918.
[11] [11] IKARI T, SHIGETOMI S, HASHIMOTO K. Crystal structure and Raman spectra of InSe[J]. Physica Status Solidi (b), 1982, 111(2): 477-481.
[12] [12] HAN G, CHEN Z G, DRENNAN J, et al. Indium selenides: structural characteristics, synthesis and their thermoelectric performances[J]. Small, 2014, 10(14): 2747-2765.
[13] [13] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272.
[15] [15] CHEVY A. Improvement of growth parameters for Bridgman-grown InSe crystals[J]. Journal of Crystal Growth, 1984, 67(1): 119-124.
[16] [16] DE BLASI C, MICOCCI G, MONGELLI S, et al. Large InSe single crystals grown from stoichiometric and non-stoichiometric melts[J]. Journal of Crystal Growth, 1982, 57(3): 482-486.
[17] [17] ISHII T. High quality single crystal growth of layered InSe Semiconductor by Bridgman technique[J]. Journal of Crystal Growth, 1988, 89(4): 459-462.
[18] [18] CHEVY A, KUHN A, MARTIN M S. Large InSe monocrystals grown from a non-stoichiometric melt[J]. Journal of Crystal Growth, 1977, 38(1): 118-122.
[19] [19] TRIBOULET R, LEVY-CLEMENT C, THEYS B, et al. Growth of InSe single crystals by the travelling heater method[J]. Journal of Crystal Growth, 1986, 79(1/2/3): 984-989.
[20] [20] SUN M, WANG W, ZHAO Q H, et al. ε-InSe single crystals grown by a horizontal gradient freeze method[J]. CrystEngComm, 2020, 22: 7864-7869.
[21] [21] SREEDHAR A K, SHARMA B L, PUROHIT R K. Preparation and electrical properties of InSe[J]. Radiation Effects, 1970, 4(1): 121-122.
[22] [22] MUDD G W, SVATEK S A, REN T H, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement[J]. Advanced Materials, 2013, 25(40): 5714-5718.
[23] [23] PETRONI E, LAGO E, BELLANI S, et al. Liquid-phase exfoliated indium-selenide flakes and their application in hydrogen evolution reaction[J]. Small, 2018, 14(26): e1800749.
[24] [24] LI Z, QIAO H, GUO Z, et al. High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered inse nanosheets with enhanced stability[J]. Advanced Functional Materials, 2018, 28(16): 1705237.
[25] [25] YANG Z B, JIE W J, MAK C H, et al. Wafer-scale synthesis of high-quality semiconducting two-dimensional layered InSe with broadband photoresponse[J]. ACS Nano, 2017, 11(4): 4225-4236.
[26] [26] ZHOU J D, SHI J, ZENG Q S, et al. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation[J]. 2D Materials, 2018, 5(2): 025019.
[27] [27] WASALA M, SIRIKUMARA H I, RAJ SAPKOTA Y, et al. Recent advances in investigations of the electronic and optoelectronic properties of group III, IV, and V selenide based binary layered compounds[J]. Journal of Materials Chemistry C, 2017, 5(43): 11214-11225.
[28] [28] ZHAO Q H, PUEBLA S, ZHANG W L, et al. Thickness identification of thin InSe by optical microscopy methods[J]. Advanced Photonics Research, 2020, 1(2): 2000025.
[29] [29] FENG W, ZHENG W, CAO W W, et al. Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface[J]. Advanced Materials, 2014, 26(38): 6587-6593.
[30] [30] MUDD G W, MOLAS M R, CHEN X, et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals[J]. Scientific Reports, 2016, 6: 39619.
[31] [31] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377.
[32] [32] TRAN V, SOKLASKI R, LIANG Y F, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319.
[33] [33] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475.
[34] [34] MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805.
[35] [35] RADISAVLJEVIC B, KIS A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820.
[36] [36] YOON Y, GANAPATHI K, SALAHUDDIN S. How good can monolayer MoS2 transistors Be? [J]. Nano Letters, 2011, 11(9): 3768-3773.
[37] [37] ZHANG Y, CHANG T R, ZHOU B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nature Nanotechnology, 2014, 9(2): 111-115.
[38] [38] LI S L, TSUKAGOSHI K, ORGIU E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J]. Chemical Society Reviews, 2016, 45(1): 118-151.
[39] [39] LARENTIS S, FALLAHAZAD B, TUTUC E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers[J]. Applied Physics Letters, 2012, 101(22): 223104.
[40] [40] GUSAKOVA J, WANG X L, SHIAU L L, et al. Electronic properties of bulk and monolayer TMDs: theoretical study within DFT framework (GVJ-2e method)[J]. Physica Status Solidi (a), 2017, 214(12): 1700218.
[41] [41] FANG H, CHUANG S, CHANG T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J]. Nano Letters, 2012, 12(7): 3788-3792.
[42] [42] CHUANG H J, CHAMLAGAIN B, KOEHLER M, et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors[J]. Nano Letters, 2016, 16(3): 1896-1902.
[43] [43] ZHAO W J, GHORANNEVIS Z, CHU L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J]. ACS Nano, 2013, 7(1): 791-797.
[44] [44] BAUGHER B W H, CHURCHILL H O H, YANG Y F, et al. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide[J]. Nature Nanotechnology, 2014, 9(4): 262-267.
[45] [45] JIN Z H, LI X D, MULLEN J T, et al. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides[J]. Physical Review B, 2014, 90(4): 045422.
[46] [46] TONGAY S, FAN W, KANG J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers[J]. Nano Letters, 2014, 14(6): 3185-3190.
[47] [47] ELAS A L, PEREA-LPEZ N, CASTRO-BELTRN A, et al. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers[J]. ACS Nano, 2013, 7(6): 5235-5242.
[48] [48] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al. Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181.
[49] [49] BANDURIN D A, TYURNINA A V, YU G L, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe[J]. Nature Nanotechnology, 2017, 12(3): 223-227.
[50] [50] LI M J, LIN C Y, YANG S H, et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping[J]. Advanced Materials, 2018, 30(44): e1803690.
[51] [51] CHANG H C, TU C L, LIN K I, et al. Synthesis of large-area InSe monolayers by chemical vapor deposition[J]. Small, 2018, 14(39): 1802351.
[52] [52] ZHAO Q H, WANG W, CARRASCOSO-PLANA F, et al. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors[J]. Materials Horizons, 2020, 7(1): 252-262.
[53] [53] FENG W, ZHENG W, CHEN X S, et al. Gate modulation of threshold voltage instability in multilayer InSe field effect transistors[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26691-26695.
[54] [54] SUCHARITAKUL S, GOBLE N J, KUMAR U R, et al. Intrinsic electron mobility exceeding 103 cm2/(V·s) in multilayer InSe FETs[J]. Nano Letters, 2015, 15(6): 3815-3819.
[55] [55] WELLS S A, HENNING A, GISH J T, et al. Suppressing ambient degradation of exfoliated InSe nanosheet devices via seeded atomic layer deposition encapsulation[J]. Nano Letters, 2018, 18(12): 7876-7882.
[56] [56] FENG W, WU J B, LI X L, et al. Ultrahigh photo-responsivity and detectivity in multilayer InSe nanosheets phototransistors with broadband response[J]. Journal of Materials Chemistry C, 2015, 3(27): 7022-7028.
[57] [57] ZENG J W, LIANG S J, GAO A Y, et al. Gate-tunable weak antilocalization in a few-layer InSe[J]. Physical Review B, 2018, 98(12): 125414.
[58] [58] JIANG J F, LI J X, LI Y T, et al. Stable InSe transistors with high-field effect mobility for reliable nerve signal sensing[J].Npj 2D Materials and Applications, 2019, 3(1): 1-8.
[59] [59] FENG W, QIN F L, YU M M, et al. Synthesis of superlattice InSe nanosheets with enhanced electronic and optoelectronic performance[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18511-18516.
[60] [60] WANG Y H, GAO J W, WEI B, et al. Reduction of the ambient effect in multilayer InSe transistors and a strategy toward stable 2D-based optoelectronic applications[J]. Nanoscale, 2020, 12(35): 18356-18362.
[61] [61] BERGERON H, GUINEY L M, BECK M E, et al. Large-area optoelectronic-grade InSe thin films via controlled phase evolution[J]. Applied Physics Reviews, 2020, 7(4): 041402.
[62] [62] HAO Q Y, LIU J D, WANG G, et al. Surface-modified ultrathin InSe nanosheets with enhanced stability and photoluminescence for high-performance optoelectronics[J]. ACS Nano, 2020, 14(9): 11373-11382.
[63] [63] LIANGMEI W, JINAN S, ZHANG Z, et al. InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics[J]. Nano Research, 2020(4): 1127-1132.
[64] [64] ZHANG S C, QIU Y F, YANG H H, et al. The role of hybrid dielectric interfaces in improving the performance of multilayer InSe transistors[J]. Journal of Materials Chemistry C, 2020, 8(20): 6701-6709.
[65] [65] CHENG C Y, PAI W L, CHEN Y H, et al. Phase modulation of self-gating in ionic liquid-functionalized InSe field-effect transistors[J]. Nano Letters, 2022, 22(6): 2270-2276.
[66] [66] FENG W, ZHOU X, TIAN W Q, et al. Performance improvement of multilayer InSe transistors with optimized metal contacts[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(5): 3653-3658.
[67] [67] YANG H W, HSIEH H F, CHEN R S, et al. Ultraefficient ultraviolet and visible light sensing and ohmic contacts in high-mobility InSe nanoflake photodetectors fabricated by the focused ion beam technique[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5740-5749.
[68] [68] ARORA H, JUNG Y, VENANZI T, et al. Effective hexagonal boron nitride passivation of few-layered InSe and GaSe to enhance their electronic and optical properties[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43480-43487.
[69] [69] HO P H, CHANG Y R, CHU Y C, et al. High-mobility InSe transistors: the role of surface oxides[J]. ACS Nano, 2017, 11(7): 7362-7370.
[70] [70] OSMAN M, HUANG Y M, FENG W, et al. Modulation of opto-electronic properties of InSe thin layers via phase transformation[J]. RSC Advances, 2016, 6(74): 70452-70459.
[71] [71] GUO Z, CAO R, WANG H, et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe[J]. National Science Review, 2022, 9(5): nwab098.
[72] [72] WANG Y, WANG H L, GALI S M, et al. Molecular doping of 2D indium selenide for ultrahigh performance and low-power consumption broadband photodetectors[J]. Advanced Functional Materials, 2021, 31(30): 2103353.
[73] [73] HUANG Y T, CHEN Y H, HO Y J, et al. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33450-33456.
[74] [74] CHEN Y H, CHENG C Y, CHEN S Y, et al. Oxidized-monolayer tunneling barrier for strong Fermi-level depinning in layered InSe transistors[J]. Npj 2D Materials and Applications, 2019, 3: 49.
[75] [75] HU S Q, LUO X G, XU J P, et al. Reconfigurable InSe electronics with van der waals integration[J]. Advanced Electronic Materials, 2022, 8(5): 2101176.
[76] [76] KANG J, WELLS S A, SANGWAN V K, et al. Solution-based processing of optoelectronically active indium selenide[J]. Advanced Materials, 2018, 30(38): e1802990.
[77] [77] CHNG S S, ZHU M M, WU J, et al. Nitrogen-mediated aligned growth of hexagonal BN films for reliable high-performance InSe transistors[J]. Journal of Materials Chemistry C, 2020, 8(13): 4421-4431.
[78] [78] CHANG Y R, HO P H, WEN C Y, et al. Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector[J]. ACS Photonics, 2017, 4(11): 2930-2936.
[79] [79] TSAI T H, YANG F S, HO P H, et al. High-mobility InSe transistors: the nature of charge transport[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35969-35976.
[80] [80] SINGH P, BAEK S, YOO H H, et al. Two-dimensional CIPS-InSe van der Waal heterostructure ferroelectric field effect transistor for nonvolatile memory applications[J]. ACS Nano, 2022: 2022 Mar 2.
[81] [81] WANG Y M, ZHANG J W, LIANG G D, et al. Schottky-barrier thin-film transistors based on HfO2-capped InSe[J]. Applied Physics Letters, 2019, 115(3): 033502.
[82] [82] JIANG J F, MENG F Q, CHENG Q L, et al. Low lattice mismatch InSe-Se vertical van der waals heterostructure for high-performance transistors via strong Fermi-level depinning[J]. Small Methods, 2020, 4(8): 2070032.
[83] [83] WANG F L, JIANG J F, LIU Q L, et al. Piezopotential gated two-dimensional InSe field-effect transistor for designing a pressure sensor based on piezotronic effect[J]. Nano Energy, 2020, 70: 104457.
[84] [84] LIU L, WU L M, WANG A W, et al. Ferroelectric-gated InSe photodetectors with high on/off ratios and photoresponsivity[J]. Nano Letters, 2020, 20(9): 6666-6673.
[85] [85] LEI S D, GE L H, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe[J]. ACS Nano, 2014, 8(2): 1263-1272.
[86] [86] TAMALAMPUDI S R, LU Y Y, KUMAR U R, et al. High performance and bendable few-layered InSe photodetectors with broad spectral response[J]. Nano Letters, 2014, 14(5): 2800-2806.
[87] [87] LUO W G, CAO Y F, HU P G, et al. Gate tuning of high-performance InSe-based photodetectors using graphene electrodes[J]. Advanced Optical Materials, 2015, 3(10): 1418-1423.
[88] [88] LEI S D, WEN F F, GE L H, et al. An atomically layered InSe avalanche photodetector[J]. Nano Letters, 2015, 15(5): 3048-3055.
[89] [89] ZHANG Z Y, CHENG B, LIM J, et al. Approaching intrinsic threshold breakdown voltage and ultra-high gain in graphite/InSe Schottky photodetector[J]. Advanced Materials, 2022: 2206196.
[90] [90] MUDD G W, SVATEK S A, HAGUE L, et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures[J]. Advanced Materials, 2015, 27(25): 3760-3766.
[91] [91] CHEN Z S, BISCARAS J, SHUKLA A. A high performance graphene/few-layer InSe photo-detector[J]. Nanoscale, 2015, 7(14): 5981-5986.
[92] [92] DAI M J, CHEN H Y, FENG R, et al. A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric Schottky junction[J]. ACS Nano, 2018, 12(8): 8739-8747.
[93] [93] ULAGANATHAN R K, YADAV K, SANKAR R, et al. Hybrid InSe nanosheets and MoS2 quantum dots for high-performance broadband photodetectors and photovoltaic cells[J]. Advanced Materials Interfaces, 2019, 6(2): 1801336.
[94] [94] CURRELI N, SERRI M, SPIRITO D, et al. Liquid phase exfoliated indium selenide based highly sensitive photodetectors[J]. Advanced Functional Materials, 2020, 30 (13): 1908427.
[95] [95] HU S Q, ZHANG Q, LUO X G, et al. Au-InSe van der Waals Schottky junctions with ultralow reverse current and high photosensitivity[J]. Nanoscale, 2020, 12(6): 4094-4100.
[96] [96] WU C Y, CAO K J, LE Y X, et al. Spectral engineering of InSe nanobelts for full-color imaging by tailoring the thickness[J]. The Journal of Physical Chemistry Letters, 2022, 13(12): 2668-2673.
[97] [97] JANG H, SEOK Y, CHOI Y, et al. High-performance near-infrared photodetectors based on surface-doped InSe[J]. Advanced Functional Materials, 2021, 31(3): 2006788.
[98] [98] DAI M J, CHEN H Y, WANG F K, et al. Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors[J]. ACS Nano, 2019, 13(6): 7291-7299.
[99] [99] QIU H, XU T, WANG Z L, et al. Hopping transport through defect-induced localized states in molybdenum disulphide[J]. Nature Communications, 2013, 4: 2642.
[100] [100] YU Z H, PAN Y M, SHEN Y T, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J]. Nature Communications, 2014, 5: 5290.
[101] [101] XIAO K J, CARVALHO A, CASTRO NETO A H. Defects and oxidation resilience in InSe[J]. Physical Review B, 2017, 96(5): 054112.
[102] [102] PHAM V T, FANG T H. Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers[J]. Scientific Reports, 2020, 10: 15082.
[103] [103] YANG X, LIU X, QU L, et al. Boosting photoresponse of self-powered InSe-based photoelectrochemical photodetectors via suppression of interface doping[J]. ACS Nano, 2022, 16(5): 8440-8448.
Get Citation
Copy Citation Text
ZHAO Qinghua, ZHENG Dan, CHEN Peng, WANG Tao, JIE Wanqi. Research Progress on Indium Selenide Crystals and Optoelectronic Devices[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1703
Category:
Received: Jul. 27, 2022
Accepted: --
Published Online: Nov. 18, 2022
The Author Email: ZHAO Qinghua (qinghua_zhao@nwpu.edu.cn)
CSTR:32186.14.