Laser & Optoelectronics Progress, Volume. 62, Issue 16, 1628004(2025)

High-Resolution Remote Sensing Semantic Segmentation Method Coupling ResNet and Transformer

Lei Zhang1, Xue Ding1,2,3、*, Jinliang Wang2,3,4, Shuangyun Peng4, and Rongxiang Luo1
Author Affiliations
  • 1School of Information Science and Technology, Yunnan Normal University, Kunming 650500, Yunnan , China
  • 2Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, Yunnan , China
  • 3Yunnan Provincial Engineering and Technology Research Center for Geospatial Information Technology, Kunming 650500, Yunnan , China
  • 4Faculty of Geography, Yunnan Normal University, Kunming 650500, Yunnan , China
  • show less
    Figures & Tables(14)
    Network structure of RTHNet
    Structure of GLCTB
    Structure of AAFM
    Structure of CAM
    Structure of SAM
    Structure of DEM
    Visualization results of different methods on the Potsdam dataset
    Visualization results of different methods on the Vaihingen dataset
    Visualization results of different methods on the WHDLD dataset
    Visualization results of model ablation experiments on the Potsdam dataset
    • Table 1. Comparison results of different methods on the Potsdam dataset

      View table

      Table 1. Comparison results of different methods on the Potsdam dataset

      MethodIoU /%mIoU /%P /%mF1 /%FLOPs /109Params /106
      Impervious surfaceBuildingLow vegetationTreeCar
      Swin-Unet1974.5181.3462.5158.8869.6969.3980.6380.8159.21046.71
      MAResU-Net1481.6390.0270.5072.8880.4079.0987.6187.5635.11026.28
      BANet2280.2987.9869.3971.5378.9477.6386.2786.5413.06012.73
      UNetFormer2580.8789.5869.5571.9979.1678.2386.5586.9511.74011.68
      TransAttUnet3279.7186.8768.7770.5178.5776.8980.3477.14355.31022.65
      CMTFNet1080.6888.9069.3271.2079.7277.9686.8786.8733.07030.07
      META-Unet3379.8288.1168.3969.8377.9476.8285.7886.0820.83021.70
      RTHNet (proposed)81.5490.1671.2373.1381.8479.5887.9487.9133.88031.08
    • Table 2. Comparison results of different methods on the Vaihingen dataset

      View table

      Table 2. Comparison results of different methods on the Vaihingen dataset

      MethodIoU /%mIoU /%P /%mF1 /%FLOPs /109Params /106
      Impervious surfaceBuildingLow vegetationTreeCar
      Swin-Unet1968.5873.2356.8271.1029.4459.8375.5372.7959.21046.71
      MAResU-Net1476.3785.6261.8075.3459.2871.6882.4382.7135.11026.28
      BANet2276.2384.8061.1275.0556.3470.7182.1382.0713.06012.73
      UNetFormer2576.2585.3762.6476.1162.7472.6283.7882.8311.74011.68
      TransAttUnet3274.3881.6061.0573.9450.1068.2180.7480.12355.31022.65
      CMTFNet1077.6586.1364.0276.3262.3773.3084.0884.0133.07030.07
      META-Unet3376.2284.3361.5475.0955.8770.6182.4482.0320.83021.70
      RTHNet (proposed)78.4386.7964.3075.8062.7473.6184.0384.2033.88031.08
    • Table 3. Comparison results of different methods on the WHDLD dataset

      View table

      Table 3. Comparison results of different methods on the WHDLD dataset

      MethodIoU /%

      mIoU /

      %

      P /

      %

      mF1 /

      %

      FLOPs /109Params /106
      Bare_soilBulddingPavementRoadVegetationWater
      Swin-Unet1931.5053.9537.8255.1378.8389.1557.7372.6169.827.76027.15
      MAResU-Net1430.0255.2138.8260.2678.6089.4658.7373.7870.598.78026.23
      BANet2232.3255.2939.1759.1578.6789.6059.0373.1571.013.26012.73
      UNetFormer2530.9255.3739.1159.4778.7389.6158.8773.3270.782.93511.68
      TransAttUnet3232.7258.3942.4160.0080.4190.6360.7674.0172.1188.83022.65
      CMTFNet1033.2057.4940.5461.2379.3990.2060.3474.1472.168.57030.07
      META-Unet3331.8954.7938.8459.3178.1789.4658.7473.0470.815.23021.70
      RTHNet (proposed)34.0556.9140.6061.8179.0789.7760.3774.2672.248.47031.08
    • Table 4. Ablation experimental results on two datasets

      View table

      Table 4. Ablation experimental results on two datasets

      DatasetBaselineAAFMGLCTBDEMmIoUmF1
      Potsdam×××77.4286.51
      ××78.9187.47
      ×79.3087.83
      79.5887.91
      Vaihingen×××69.2480.86
      ××73.1383.88
      ×73.2784.00
      73.6184.20
    Tools

    Get Citation

    Copy Citation Text

    Lei Zhang, Xue Ding, Jinliang Wang, Shuangyun Peng, Rongxiang Luo. High-Resolution Remote Sensing Semantic Segmentation Method Coupling ResNet and Transformer[J]. Laser & Optoelectronics Progress, 2025, 62(16): 1628004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 5, 2025

    Accepted: Mar. 21, 2025

    Published Online: Jul. 25, 2025

    The Author Email: Xue Ding (4228@ynnu.edu.cn)

    DOI:10.3788/LOP250591

    CSTR:32186.14.LOP250591

    Topics