Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 895(2025)

Ionic Transport and Interface Regulation of Organic-Inorganic Composite Electrolytes for Solid-State Sodium Batteries

YANG Shoumeng, TANG Yi, CHEN Xin, ZHANG Xu, YANG Yang*, and RUI Xianhong
Author Affiliations
  • School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    References(97)

    [1] [1] WEN J P, ZHAO D, ZHANG C W. An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency[J]. Renew Energy, 2020, 162: 1629–1648.

    [2] [2] YANG C Y, JIANG Z, CHEN X Y, et al. Lithium metal based battery systems with ultra-high energy density beyond 500 W·h·kg–1[J]. Chem Commun, 2024, 60(75): 10245–10264.

    [3] [3] LIU R Y. Recent progress of anode and cathode materials for lithium ion battery[J]. Mater Sci Forum, 2021, 1027: 69–75.

    [4] [4] NIU H Z, ZHANG N, LU Y, et al. Strategies toward the development of high-energy-density lithium batteries[J]. J Energy Storage, 2024, 88: 111666.

    [5] [5] CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Adv Energy Mater, 2020, 10(38): 2001310.

    [6] [6] PIRAYESH P, JIN E Z, WANG Y J, et al. Na metal anodes for liquid and solid-state Na batteries[J]. Energy Environ Sci, 2024, 17(2): 442–496.

    [8] [8] YANG Y X, YANG S M, XUE X, et al. Inorganic all-solid-state sodium batteries: Electrolyte designing and interface engineering[J]. Adv Mater, 2024, 36(1): e2308332.

    [9] [9] XI G, XIAO M, WANG S J, et al. Polymer-based solid electrolytes: Material selection, design, and application[J]. Adv Funct Mater, 2021, 31(9): 2007598.

    [10] [10] LIU Q Y, JIANG L, ZHENG P L, et al. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all-solid-state batteries[J]. Chem Rec, 2022, 22(10): e202200116.

    [11] [11] WU F, ZHANG K, LIU Y R, et al. Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects[J]. Energy Storage Mater, 2020, 33: 26–54.

    [12] [12] LI Z, FU J L, ZHOU X Y, et al. Ionic conduction in polymer-based solid electrolytes[J]. Adv Sci, 2023, 10(10): e2201718.

    [13] [13] YE Y S, RICK J, HWANG B J. Ionic liquid polymer electrolytes[J]. J Mater Chem A, 2013, 1(8): 2719–2743.

    [14] [14] CHOI J, ZABIHI O, VARLEY R J, et al. Enhancement of ionic conduction and mechanical properties for all-solid-state polymer electrolyte systems through ionic and physical bonding[J]. Mater Today Chem, 2022, 23: 100663.

    [15] [15] ZHANG B K, TAN R, YANG L Y, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes[J]. Energy Storage Mater, 2018, 10: 139–159.

    [16] [16] HUANG J W, WU K, XU G, et al. Recent progress and strategic perspectives of inorganic solid electrolytes: Fundamentals, modifications, and applications in sodium metal batteries[J]. Chem Soc Rev, 2023, 52(15): 4933–4995.

    [18] [18] HOU J Y, ZHU T K, WANG G, et al. Composite electrolytes and interface designs for progressive solid-state sodium batteries[J]. Carbon Energy, 2024, 6(10): e628.

    [20] [20] SASHMITHA K, RANI M U. A comprehensive review of polymer electrolyte for lithium-ion battery[J]. Polym Bull, 2023, 80(1): 89–135.

    [21] [21] PAN Q G, GONG D C, TANG Y B. Recent progress and perspective on electrolytes for sodium/potassium-based devices[J]. Energy Storage Mater, 2020, 31: 328–343.

    [23] [23] THAKUR A K, HASHMI S A. Polymer matrix–filler interaction mechanism for modified ion transport and glass transition temperature in the polymer electrolyte composites[J]. Solid State Ion, 2010, 181(27–28): 1270–1278.

    [24] [24] FU J L, LI Z, ZHOU X Y, et al. Ion transport in composite polymer electrolytes[J]. Mater Adv, 2022, 3(9): 3809–3819.

    [25] [25] YOUNG W S, KUAN W F, THOMAS H EPPS I III. Block copolymer electrolytes for rechargeable lithium batteries[J]. J Polym Sci Part B Polym Phys, 2014, 52(1): 1–16.

    [26] [26] ELACQUA E, BUAR D K, HENRY R F, et al. Supramolecular complexes of sulfadiazine and pyridines: Reconfigurable exteriors and chameleon-like behavior of tautomers at the co-crystal–salt boundary[J]. Cryst Growth Des, 2013, 13(1): 393–403.

    [27] [27] LI Z Y, LI Z, FU J L, et al. Sodium-ion conducting polymer electrolytes[J]. Rare Met, 2023, 42(1): 1–16.

    [28] [28] DIEDERICHSEN K M, BUSS H G, MCCLOSKEY B D. The compensation effect in the vogel–tammann–fulcher (VTF) equation for polymer-based electrolytes[J]. Macromolecules, 2017, 50(10): 3831–3840.

    [29] [29] YANG H, WU N Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review[J]. Energy Sci Eng, 2022, 10(5): 1643–1671.

    [30] [30] XU W S, DOUGLAS J F, SUN Z Y. Polymer glass formation: Role of activation free energy, configurational entropy, and collective motion[J]. Macromolecules, 2021, 54(7): 3001–3033.

    [31] [31] CHENG S, SMITH D M, LI C Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes?[J]. Macromolecules, 2014, 47(12): 3978–3986.

    [32] [32] HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279–291.

    [33] [33] UPOV M, MARTYNKOV G S, BARABASZOV K. Effect of nanofillers dispersion in polymer matrices: A review[J]. Sci Adv Mat, 2011, 3(1): 1–25.

    [34] [34] PAN Z B, YAO L M, ZHAI J W, et al. Interfacial coupling effect in organic/inorganic nanocomposites with high energy density[J]. Adv Mater, 2018, 30(17): e1705662.

    [35] [35] LIU Y, XU B Q, ZHANG W Y, et al. Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries[J]. Small, 2020, 16(15): 1902813.

    [36] [36] ZHENG Y, YAO Y Z, OU J H, et al. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials and advanced structures[J]. Chem Soc Rev, 2020, 49(23): 8790–8839.

    [37] [37] WANG P F, YAO H R, LIU X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Sci Adv, 2018, 4(3): eaar6018.

    [38] [38] WESTON J E, STEELE B C H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes[J]. Solid State Ion, 1982, 7(1): 75–79.

    [39] [39] WIECZOREK W, SUCH K, WYCILIK H, et al. Modifications of crystalline structure of peo polymer electrolytes with ceramic additives[J]. Solid State Ion, 1989, 36(3–4): 255–257.

    [40] [40] VERMA H, MISHRA K, RAI D K. Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries[J]. J Solid State Electrochem, 2020, 24(3): 521–532.

    [41] [41] XIE D H, ZHANG M, WU Y, et al. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life[J]. Adv Funct Mater, 2020, 30(5): 1906770.

    [42] [42] VILLALUENGA I, BOGLE X, GREENBAUM S, et al. Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes[J]. J Mater Chem A, 2013, 1(29): 8348–8352.

    [43] [43] BAG S, ZHOU C T, REID S, et al. Electrochemical studies on symmetric solid-state Na-ion full cell using Na3V2(PO4)3 electrodes and polymer composite electrolyte[J]. J Power Sources, 2020, 454: 227954.

    [44] [44] KUMAR D, GOHEL K, KANCHAN D K, et al. Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries[J]. J Mater Sci Mater Electron, 2020, 31(16): 13249–13260.

    [45] [45] DIMRI M C, KUMAR D, AZIZ S B, et al. ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte[J]. Ionics, 2021, 27(3): 1143–1157.

    [46] [46] MA X H, QIAO F, QIAN M F, et al. Facile fabrication of flexible electrodes with poly(vinylidene fluoride)/Si3N4 composite separator prepared by electrospinning for sodium‐ion batteries[J]. Scr Mater, 2021, 190: 153–157.

    [47] [47] XU L Q, LI J Y, DENG W T, et al. Boosting the ionic conductivity of PEO electrolytes by waste eggshell-derived fillers for high-performance solid lithium/sodium batteries[J]. Mater Chem Front, 2021, 5(3): 1315–1323.

    [48] [48] RAO M C, KOUTAVARAPU R, KUMAR K V. Structural and electrochemical properties of ZrO2 doped PVP-Na+ based nanocomposite polymer films[J]. Mater Sci Semicond Process, 2019, 89: 41–50.

    [49] [49] ZHANG Z Z, ZHANG Q Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. J Mater Chem A, 2016, 4(41): 15823–15828.

    [50] [50] CHENG M, QU T, ZI J, et al. A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance[J]. Nanotechnology, 2020, 31(42): 425401.

    [51] [51] YU X W, XUE L G, GOODENOUGH J B, et al. Ambient- temperature all-solid-state sodium batteries with a laminated composite electrolyte[J]. Adv Funct Mater, 2021, 31(2): 2002144.

    [52] [52] YU X W, XUE L G, GOODENOUGH J B, et al. A high-performance all-solid-state sodium battery with a poly(ethylene oxide)– Na3Zr2Si2PO12 composite electrolyte[J]. ACS Mater Lett, 2019, 1(1): 132–138.

    [53] [53] YI Q, ZHANG W Q, LI S Q, et al. Durable sodium battery with a flexible Na3Zr2Si2PO12-PVDF-HFP composite electrolyte and sodium/carbon cloth anode[J]. ACS Appl Mater Interfaces, 2018, 10(41): 35039–35046.

    [54] [54] XU X Y, LI Y Y, CHENG J, et al. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal[J]. J Energy Chem, 2020, 41: 73–78.

    [55] [55] GUO X L, LI Y, WANG H. Ultrathin sulfide/PVDF-HFP composite electrolyte for solid-state sodium metal batteries[J]. ACS Appl Energy Mater, 2024, 7(3): 1008–1014.

    [56] [56] GAO H C, GUO B K, SONG J, et al. A composite gel–polymer/glass–fiber electrolyte for sodium-ion batteries[J]. Adv Energy Mater, 2015, 5(9): 1402235.

    [57] [57] WANG X X, LIU Z H, TANG Y H, et al. PVDF-HFP/PMMA/ TPU-based gel polymer electrolytes composed of conductive Na3Zr2Si2PO12 filler for application in sodium ions batteries[J]. Solid State Ion, 2021, 359: 115532.

    [59] [59] ZHU T C, DONG X L, LIU Y, et al. An all-solid-state sodium–sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode[J]. ACS Appl Energy Mater, 2019, 2(7): 5263–5271.

    [60] [60] NAIK J, BHAJANTRI R F, HEBBAR V, et al. Influence of ZrO2 filler on physico-chemical properties of PVA/NaClO4 polymer composite electrolytes[J]. Adv Compos Hybrid Mater, 2018, 1(3): 518–529.

    [61] [61] PETA G, BUBLIL S, ALON-YEHEZKEL H, et al. Toward high performance all solid-state Na batteries: Investigation of electrolytes comprising NaPF6, poly(ethylene oxide) and TiO2[J]. J Electrochem Soc, 2021, 168(11): 110553.

    [62] [62] HAMISU A, ELIK S . Poly(AN-co-PEGMA)/hBN/NaClO4 composite electrolytes for sodium ion battery[J]. e-Polymers, 17(6): 507–515.

    [63] [63] ZHENG J, HU Y Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes[J]. ACS Appl Mater Interfaces, 2018, 10(4): 4113–4120.

    [64] [64] YURASH B, CAO D X, BRUS V V, et al. Towards understanding the doping mechanism of organic semiconductors by Lewis acids[J]. Nat Mater, 2019, 18(12): 1327–1334.

    [65] [65] HIRAOKA K, KATO M, KOBAYASHI T, et al. Polyether/ Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries[J]. J Phys Chem C, 2020, 124(40): 21948–21956.

    [66] [66] REN Y X, HORTANCE N, MCBRIDE J, et al. Sodium–sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte[J]. ACS Energy Lett, 2021, 6(2): 345–353.

    [67] [67] HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4[J]. J Power Sources, 2014, 258: 420–423.

    [68] [68] YUAN Y, CHEN L K, LI Y H, et al. Functional LiTaO3 filler with tandem conductivity and ferroelectricity for PVDF-based composite solid-state electrolyte[J]. Energy Mater Devices, 2023, 1(1): 9370004.

    [69] [69] WANG L L, XIE R C, CHEN B B, et al.In-situvisualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nat Commun, 2020, 11(1): 5889.

    [70] [70] LIN Y Y, LI X Y, ZHENG W L, et al. Effect of SiO2 microstructure on ionic transport behavior of self-healing composite electrolytes for sodium metal batteries[J]. J Membr Sci, 2023, 672: 121442.

    [71] [71] NI’MAH Y L, CHENG M Y, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. J Power Sources, 2015, 278: 375–381.

    [72] [72] MA C, DAI K, HOU H S, et al. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers[J]. Adv Sci, 2018, 5(5): 1700996.

    [73] [73] ZHANG Y, ZHENG H R, DING H G, et al. Ceria quantum dot filler-modified polymer electrolytes for three-dimensional-printed sodium solid-state batteries[J]. Polymers, 2024, 16(12): 1707.

    [74] [74] WANG T Y, ZHANG M, ZHOU K F, et al. A hetero-layered, mechanically reinforced, ultra-lightweight composite polymer electrolyte for wide-temperature-range, solid-state sodium batteries[J]. Adv Funct Mater, 2023, 33(22): 2215117.

    [75] [75] KODURU H K, BRUNO L, MARINOV Y G, et al. Mechanical and sodium ion conductivity properties of graphene oxide–incorporated nanocomposite polymer electrolyte membranes[J]. J Solid State Electrochem, 2019, 23(9): 2707–2722.

    [76] [76] WANG X T, WANG X X, CHEN J J, et al. Durable sodium battery composed of conductive Ti3C2Tx MXene modified gel polymer electrolyte[J]. Solid State Ion, 2021, 365: 115655.

    [77] [77] NARAYANASAMY M, ZAMAN S, KOO C M. 2D MXenes for all-solid-state batteries: A comprehensive review[J]. Mater Today Energy, 2023, 37: 101405.

    [78] [78] ZHANG G, SHU J, XU L, et al. Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery[J]. Nanomicro Lett, 2021, 13(1): 105.

    [79] [79] KIM J K, LIM Y J, KIM H, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy Environ Sci, 2015, 8(12): 3589–3596.

    [80] [80] ZHAO G F, XU L F, JIANG J W, et al. COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries[J]. Nano Energy, 2022, 92: 106756.

    [81] [81] SONG S F, HU N, LU L. Solid electrolytes for solid-state Li/Na-metal batteries: Inorganic, composite and polymeric materials[J]. Chem Commun, 2022, 58(86): 12035–12045.

    [82] [82] WANG Y M, WANG Z T, ZHENG F, et al. Ferroelectric engineered electrode-composite polymer electrolyte interfaces for all-solid-state sodium metal battery[J]. Adv Sci, 2022, 9(13): e2105849.

    [83] [83] CHEN S L, FENG F, CHE H Y, et al. High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte[J]. Chem Eng J, 2021, 406: 126736.

    [84] [84] CUI Y L, ZHANG P Y, TIAN Y, et al. A robust 3D nanostructured composite polymer electrolyte with novel dual-ion channels toward solid-state sodium metal batteries[J]. Chem Eng J, 2024, 498: 155375.

    [85] [85] PENG C Y, HUANG S Z, SHEN X Y, et al. An amphiphilic interface for constructing a uniform composite solid-state electrolyte towards long-life all-solid-state sodium metal batteries[J]. J Mater Chem A, 2024, 12(35): 23485–23494.

    [86] [86] YAN F Y, JIANG Y X, SUN X D, et al. Surface modification and chemical functionalization of carbon dots: A review[J]. Mikrochim Acta, 2018, 185(9): 424.

    [87] [87] RONG M Z, ZHANG M Q, RUAN W H. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review[J]. Mater Sci Technol, 2006, 22(7): 787–796.

    [88] [88] YUAN D, LI Z B, THITSARTARN W, et al. phase PVDF-hfp induced by mesoporous SiO2 nanorods: Synthesis and formation mechanism[J]. J Mater Chem C, 2015, 3(15): 3708–3713.

    [89] [89] DAS A, MELEPURAKKAL A, SREERAM P, et al. Exceptional cyclability of thermally stable PVdF-co-HFP/SiO2 nanocomposite polymer electrolytes for sodium ion batteries[J]. J Energy Storage, 2023, 73: 109026.

    [91] [91] DUAN T, CHENG H W, LIU Y B, et al. A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries[J]. Energy Storage Mater, 2024, 65: 103091.

    [92] [92] DONG P Y, DENG Q, ZHANG Q M, et al. Enabling high rate capability and stability all-solid-state batteriesviacationic surfactant modification of composite electrolyte[J]. J Colloid Interface Sci, 2023, 652(Pt A): 567–576.

    [93] [93] WU S L, YU Z F, NIE X L, et al. Fast ion conduction nanofiber matrix composite electrolyte for dendrite-free solid-state sodium-ion batteries with wide temperature operation[J]. Adv Energy Mater, 2022, 12(48): 2202930.

    [95] [95] WU J F, YU Z Y, WANG Q, et al. High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes[J]. Energy Storage Mater, 2020, 24: 467–471.

    [96] [96] NIU W, CHEN L, LIU Y C, et al. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J]. Chem Eng J, 2020, 384: 123233.

    [97] [97] MACFARLANE D R, HUANG J H, FORSYTH M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries[J]. Nature, 1999, 402: 792–794.

    [98] [98] RAN L B, LI M, COOPER E, et al. Enhanced safety and performance of high-voltage solid-state sodium battery through trilayer, multifunctional electrolyte design[J]. Energy Storage Mater, 2021, 41: 8–13.

    [100] [100] VASUDEVAN S, DWIVEDI S, BALAYA P. Overview and perspectives of solid electrolytes for sodium batteries[J]. Int J Appl Ceram Technol, 2023, 20(2): 563–584.

    [101] [101] SHEN L, DENG S G, JIANG R R, et al. Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries[J]. Energy Storage Mater, 2022, 46: 175–181.

    [102] [102] WANG W T, DING M H, CHEN S Y, et al. A novel composite solid electrolyte with ultrahigh ion transference number and stability for solid-state sodium metal batteries[J]. Chem Eng J, 2024, 491: 151989.

    [103] [103] WANG W T, YUAN W Y, ZHAO Z J, et al. Sandwiched composite electrolyte with excellent interfacial contact for high-performance solid-state sodium-ion batteries[J]. J Colloid Interface Sci, 2023, 652(Pt A): 132–141.

    [104] [104] LING W, FU N, YUE J P, et al. A flexible solid electrolyte with multilayer structure for sodium metal batteries[J]. Adv Energy Mater, 2020, 10(9): 1903966.

    [105] [105] WANG Z L, MAO Y Z, SHENG L H, et al. Robust solid-state Na-CO2 battery with Na2.7Zr2Si2PO11.7F0.3-PVDF-HFP composite solid electrolyte and Na15Sn4/Na anode[J]. ACS Appl Mater Interfaces, 2024, 16(10): 12706–12716.

    Tools

    Get Citation

    Copy Citation Text

    YANG Shoumeng, TANG Yi, CHEN Xin, ZHANG Xu, YANG Yang, RUI Xianhong. Ionic Transport and Interface Regulation of Organic-Inorganic Composite Electrolytes for Solid-State Sodium Batteries[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 895

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 21, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: YANG Yang (yangyang727@gdut.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240742

    Topics