Journal of Optoelectronics · Laser, Volume. 35, Issue 11, 1174(2024)

Object detection algorithm CYM-Net based on point cloud lightweight

XUE Yongjiang, WANG Wei, ZHANG Jingfeng, YAO Chenyang, and SONG Qingzeng
Author Affiliations
  • School of Computer Science and Technology, Tiangong University, Tianjin 300387, China
  • show less
    References(18)

    [1] [1] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17)[2023-04-03]. https://www.arxiv.org/abs/1704.04861.

    [2] [2] MICHELE A, COLIN V, SANTIKA D D. MobileNet convolutional neural metworks and support vector machines for palmprint recognition[J]. Procedia Computer Science, 2019, 157: 110-117.

    [3] [3] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//IEEE/CVF International Conference on Computer Vision, October 27-November 2, 2019, Seoul, Korea (South). New York: IEEE, 2019: 1314-1324.

    [4] [4] TIAN Y, YANG G, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.

    [5] [5] WU L, MA J, ZHAO Y, et al. Apple detection in complex scene using the improved YOLOv4 model[J]. Agronomy, 2021, 11(3): 476.

    [6] [6] ZHANG M, XU S, SONG W, et al. Lightweight underwater object detection based on YOLO v4 and multi-scale attentional feature fusion[J]. Remote Sensing, 2021, 13(22): 4706.

    [7] [7] LAW H, TENG Y, RUSSAKOVSKY O, et al. CornerNet-Lite: Efficient keypoint based object detection[EB/OL]. (2019-04-18)[2023-04-03]. https://www.arxiv.org/abs/1904.08900.

    [8] [8] DUAN K, BAI S, XIE L, et al. Centernet: Keypoint triplets for object detection[C]//IEEE/CVF International Conference on Computer Vision, October 27-November 2, 2019, Seouol, Korea (South). New York: IEEE, 2019: 6568-6577.

    [9] [9] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE Conference on Computer Vision and Pattern Recognition, June 18-22, 2018, Slat Lake City, UT, USA. New York: IEEE, 2018: 4510-4520.

    [10] [10] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, July 21-26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 936-944.

    [11] [11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-04-03]. https://www.arxiv.org/abs/2004.10934.

    [12] [12] READING C, HARAKEH A, CHAE J, et al. Categorical depth distribution network for monocular 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 10-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 8551-8560.

    [13] [13] ZOU Z, YE X, DU L, et al. The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3D object detection[C]//IEEE/CVF International Conference on Computer Vision, October 10-17, 2021, Montreal, QC, Canada. New York: IEEE, 2021: 2693-2702.

    [14] [14] WANG L, DU L, YE X, et al. Depth-conditioned dynamic message propagation for monocular 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 10-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 454-463.

    [15] [15] CHEN H, HUANG Y, TIAN W, et al. MonoRUN: Monocular 3D object detection by reconstruction and uncertainty propagation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 10-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 10374-10383.

    [16] [16] BRAZIL G, LIU X. M3D-RPN: Monocular 3D region proposal network for object detection[C]//IEEE/CVF International Conference on Computer Vision, October 27-November 2, 2019, Seoul Korea (South). New York: IEEE, 2019: 9286-9295.

    [17] [17] MA X, ZHANG Y, XU D, et al. Delving into localization errors for monocular 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 10-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 4719-4728.

    [18] [18] ZHANG Y, LU J, ZHOU J. Objects are different: Flexible monocular 3D object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 10-25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 3288-3297.

    Tools

    Get Citation

    Copy Citation Text

    XUE Yongjiang, WANG Wei, ZHANG Jingfeng, YAO Chenyang, SONG Qingzeng. Object detection algorithm CYM-Net based on point cloud lightweight[J]. Journal of Optoelectronics · Laser, 2024, 35(11): 1174

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 3, 2023

    Accepted: Dec. 31, 2024

    Published Online: Dec. 31, 2024

    The Author Email:

    DOI:10.16136/j.joel.2024.11.0164

    Topics