Chinese Journal of Lasers, Volume. 40, Issue 11, 1102013(2013)
All-Fiber Mid-Infrared Supercontinuum Source from 1.9 μm to 4.3 μm
[1] [1] T Udem, R Holzwarth, T W Hansch. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.
[2] [2] B Guo, Y Wang, C Peng, et al.. Laser-based mid-infrared reflectance imaging of biological tissues[J]. Opt Express, 2004, 12(1): 208-219.
[3] [3] C L Hagen, J W Walewski, S T Sanders. Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source[J]. IEEE Photon Technol Lett, 2006,18(1): 91-93.
[4] [4] M Duhant, W Renard, G Canat, et al.. Improving mid-infrared supercontinuum generation efficency by pumping a fluoride fiber directly into the anomalous regime at 1995 nm[C]. CLEO/Europe and EQEC 2011 Conference Digest, Optical Society of America, 2011. CD9_1.
[5] [5] M Eckerle, C Kieleck, J Widerski, et al.. Actively Q-switched and mode-locked Tm3+-doped silicate 2 μm fiber laser for supercontinuum generation in fluoride fiber[J]. Opt Lett, 2012, 37(4): 512-514.
[6] [6] J Swiderski, M Maciejewska. Supercontinuum generation with the use of nanosecond pulses at the wavelength of 1550 nm[C]. SPIE, 2013, 8702: 870205.
[7] [7] J Swiderski, M Michalska, G Maze. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Opt Express, 2013, 21(7): 7851-7857.
[8] [8] J Swiderski, M Michalska. Over three-octave spanning supercontinuum generated in a fluoride fiber pumped by Er & ErYb-doped and Tm-doped fiber amplifiers[J]. Opt & Laser Technol, 2013, 52: 75-80.
[9] [9] C Xia, Z Xu, M N Islam, et al.. 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(2): 422-434.
[10] [10] P Kulkarni, V V Alexander, M Kumar, et al.. Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier[J]. J Opt Soc Am B, 2011, 28(10): 2486-2498.
[11] [11] Peter M Moselund, Christian Petersen, Sune Dupontb, et al.. Supercontinuum-broad as a lamp bright as a laser, now in the mid-infrared[C]. SPIE, 2012, 8381: 83811A.
[12] [12] G Qin, X Yan, C Kito, et al.. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Appl Phys Lett, 2009, 95(16): 161103.
[13] [13] N Ducros, A Labruyère, S Février, et al.. Mid-IR Supercontinuum in a Fluorozirconate Fiber Pumped by a Femtosecond CPA System at 1.6 μm [C]. Conference on Lasers and Electro-Optics, 2010, CPDB7.
[14] [14] C Agger, C Petersen, S Dupont, et al.. Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation[J]. J Opt Soc Am B, 2012, 29(4): 635-645.
[15] [15] P Domachuk, N A Wolchover, M Cronin-Golomb, et al.. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Opt Express, 2008, 16(10): 7161-7168.
[16] [16] L B Shaw, R R Gattass, J Sanghera, et al.. All-fiber mid-IR supercontinuum source from 1.5 to 5 μm [C]. Fiber Lasers VIII: Technology, Systems, and Applications, 2011. 79140P.
[17] [17] B Zhang, J Hou, P Z Liu, et al.. Flat supercontinuum generation covering C-band to U-band in two-stage Er/Yb co-doped double-clad fiber amplifier[J]. Laser Phys, 2011, 21(11): 1895-1898.
[18] [18] J Geng, Q Wang, S Jiang. High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier[J]. Appl Opt, 2012, 51(7): 834-840.
[19] [19] C A Evans, Z Ikonic, B Richards, et al.. Numerical rate equation modeling of a ~2.1 μm-Tm3+/Ho3+ co-doped tellurite fiber laser[J]. J Lightwave Technol, 2009, 27(19): 4280-4288.
[20] [20] A Louchev, Y Urata, N. Saito, et al.. Computatinal model for operation of 2 μm co-doped Tm, Ho solid state lasers[J]. Opt Express, 2007, 15(19): 11903-11912.
[21] [21] S Kurkov, E M Sholokhov, O I Medvedkov, et al.. Holmium fiber laser based on the heavily doped active fiber[J]. Laser Phys Lett, 2009, 6(9): 661-664.
[22] [22] Xia, M Kumar, M Y Cheng, et al.. Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2007, 13(3): 789-796.
[23] [23] J P Gordon. Theory of the soliton self-frequency shift[J]. Opt Lett, 1986, 11(10): 662-664.
[24] [24] R N Brown, J J Hutta. Material dispersion in high optical qualityheavy metal fluoride glasses[J]. Appl Opt, 1985,24(24): 4500-4503.
[25] [25] A J Jin, Z Wang, J Hou, et al.. Experimental measurement and numerical calculation of dispersion of ZBLAN fiber[C]. 2011 International Conference on Electronics and Optoelectronics, 2011. V3181.
Get Citation
Copy Citation Text
Zhang Bin, Yang Weiqiang, Hou Jing, Lü Xinming, Jiang Zongfu. All-Fiber Mid-Infrared Supercontinuum Source from 1.9 μm to 4.3 μm[J]. Chinese Journal of Lasers, 2013, 40(11): 1102013
Category: Laser physics
Received: Jun. 8, 2013
Accepted: --
Published Online: Oct. 20, 2013
The Author Email: Bin Zhang (zhangbin203@yahoo.com.cn)