Matter and Radiation at Extremes, Volume. 6, Issue 3, 038401(2021)

Pressure-induced disordering of site occupation in iron–nickel nitrides

Binbin Wu1、*, Li Lei1, Feng Zhang1, Qiqi Tang1, Shan Liu1, Meifang Pu1, Duanwei He1, Yuanhua Xia2, Leiming Fang2, Hiroaki Ohfuji3, and Tetsuo Irifune3
Author Affiliations
  • 1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
  • 2Institute of Nuclear Physics and Chemistry, Academy of Engineering Physics, Mianyang 621900, China
  • 3Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
  • show less
    References(54)

    [3] O. L.Anderson. The Earth’s core and the phase diagram of iron. Philos. Trans. R. Soc. London, Ser. A, 306, 21-35(1982).

    [4] A.Jephcoat, P.Olson. Is the inner core of the Earth pure iron?. Nature, 325, 332-335(1987).

    [9] R. J.Hemley, H. K.Mao. In situ studies of iron under pressure: New windows on the Earth’s core. Int. Geol. Rev., 43, 1-30(2001).

    [10] X. G.Diao, F.Garcia, H. R.Rechenberg, R. B.Scorzelli, A. Y.Takeuchi. Magnetic properties of perovskite-type Fe–Ni nitrides γ′-(Fe1−xNix)4N (0⩽x⩽0.9). J. Appl. Phys., 85, 4485-4487(1999).

    [11] I. A.Abrikosov, B.Johansson, M.Schilfgaarde. Origin of the Invar effect in iron–nickel alloys. Nature, 400, 46-49(1999).

    [12] Y.Himuro, K.Ishida, R.Kainuma, I.Ohnuma, Y.Tanaka. Phase equilibria and γ′-L12 phase stability in the Ni-rich portion of Ni–Fe–Si and Ni–Fe–Al systems. Intermetallics, 13, 620-630(2005).

    [13] J. C.Han, X. D.He, S. H.Meng, C. Q.Sun, B. K.Tay, H. W.Tian, X.Wang, W.Xu, S. S.Yu, W. T.Zheng. Growth, structural, and magnetic properties of iron nitride thin films deposited by dc magnetron sputtering. Appl. Surf. Sci., 220, 30-39(2003).

    [14] H. J.Grabke. The role of nitrogen in the corrosion of iron and steels. ISIJ Int., 36, 777-786(1996).

    [15] M.Matsumoto, A.Morisako, M.Naoe. Magnetic anisotropy and soft magnetism of iron nitride thin films prepared by facing‐target sputtering. J. Appl. Phys., 69, 5619-5621(1991).

    [16] B. C.Frazer. Magnetic structure of Fe4N. Phys. Rev., 112, 751-754(1958).

    [17] F.Hüning, H.Jacobs, W.Kockelmann, A.Leineweber, H.Lueken, H.Schilder. ε-Fe3N: Magnetic structure, magnetization and temperature dependent disorder of nitrogen. J. Alloys Compd., 288, 79-87(1999).

    [18] J. A.Berger, W. W.George. Structure and magnetic properties of some transition metal nitrides. J. Met., 7, 360-368(1955).

    [19] N. S.Gajbhiye, R. N.Panda. Magnetic properties of nanocrystalline γ–Fe–Ni–N nitride systems. J. Appl. Phys, 86, 3295-3302(1990).

    [20] B.Chen, X.Chen, L.Fang, S.Gao, D.He, Q.Hu, T.Irifune, Y.Kojima, L.Lei, H.Ohfuji, S. A. T.Redfern, X.Wang, Y.Xia, Z.Zeng, L.Zhang. Neutron diffraction study of the structural and magnetic properties of ε-Fe3N1.098 and ε-Fe2.322Co0.678N0.888. J. Alloys Compd., 752, 99-105(2018).

    [21] R.Dronskowski, D. A.Dzivenko, M.Hanfland, K.Meier, R.Niewa, D.Rau, R.Riedel, U.Schwarz, M.Wessel, A.Wosylus. High-pressure, high-temperature single-crystal growth, ab initio electronic structure calculations, and equation of state of ε-Fe3N1+x. Chem. Mater., 21, 392-398(2009).

    [22] U.Burkhardt, K.Guo, C.Müller, R.Niewa, D.Rau, W.Schnelle, U.Schwarz, L.Toffoletti. Ternary metastable nitrides ε-Fe2TMN (TM = Co, Ni): High-pressure, high-temperature synthesis, crystal structure, thermal stability, and magnetic properties. Chem. Mater., 24, 4600-4606(2012).

    [23] L.Lei, L.Zhang. Recent advance in high-pressure solid-state metathesis reactions. Matter Radiat. Extremes, 3, 95-103(2018).

    [24] D.He, X.Jiang, L.Lei, Y.Li, F.Liu, P.Liu, F.Peng, W.Yin. High pressure synthesis and properties studies on spherical bulk ε-Fe3N. High Pressure Res., 34, 317-326(2014).

    [25] L.Feng, S.Gao, Q.Hu, L.Lei, L.Qi, L.Zhang. Synthesis and characterization of spherical-like bulk ε-Fe3−xCoxN (x = 0.0, 0.25, 1.95). Mater. Chem. Phys., 197, 94-99(2017).

    [26] L.Feng, Q.Hu, T.Irifune, L.Lei, H.Ohfuji, M.Pu, L.Qi, L.Zhang. Strengthening effects of interstitial nitrogen on rhenium. J. Appl. Phys., 123, 055911(2018).

    [27] Z. C.Feng, D.He, Q.Hu, X.Jiang, L.Lei. High-pressure Raman spectroscopy of Re3N crystals. Solid State Commun., 201, 107-110(2015).

    [28] C.Chen, H.Ge, D.He, C.Jin, Y.Li, F.Liu, J. C.Neuefeind, Z.Qin, S.Sun, L.Wang, S.Wang, X.Wen, H.Xu, X.Yu, J.Zhang, Y.Zhang, Y.Zhao. A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc., 137, 4815-4822(2015).

    [29] Choong-ShikYoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 5(2020).

    [30] H.Ohfuji, M.Yamamoto. EDS quantification of light elements using osmium surface coating. J. Miner. Petrol. Sci., 110, 189-195(2015).

    [32] A. N.Fitch, A. P.Hammersley, M.Hanfland, D.Hausermann, S. O.Svensson. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res., 14, 235(1996).

    [33] N.Hirao, K.Hirose, S. I.Kawaguchi, Y.Ohishi, E.Ohtani, K.Shimizu. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter Radiat. Extremes.

    [34] J.Rodriguez-Carvajal. An Introduction to the Program FullProf 2000(2001).

    [35] Z. Y.Fu, J.Shi, H.Wang, W. M.Wang, Y. C.Wang, J. Y.Zhang, K. B.Zhang, Q. J.Zhang. Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy. J. Alloys Compd., 502, 295-299(2010).

    [36] U.Brückner, A.Epishin, B.Fedelich, T.Link, P.Portella. Effects of segregation in nickel-base superalloys: Dendritic stresses. Superalloys, 537-543(2004).

    [37] D.He, L.Lei. Synthesis of GaN crystals through solid-state metathesis reaction under high pressure. Cryst. Growth Des., 9, 1264-1266(2009).

    [38] D.He, X.Jiang, L.Lei, S.Lin, W.Yin. Synthetic route to metal nitrides: High-pressure solid-state metathesis reaction. Inorg. Chem., 52, 13356-13362(2013).

    [39] A. P.Bulkin, B.Chen, X.Chen, L.Fang, S. I.Kalinin, M. R.Kolkhidashvili, H.Li, V. A.Solovei, G.Sun, V. A.Ulyanov, X.Wang, Y.Wang, C.Xie, L.Xie. Fenghuang: High-intensity multi-section neutron powder diffractometer at CMRR. Nucl. Instrum. Methods Phys. Res., Sect. A, 915, 31-35(2019).

    [40] X.Chen, L.Fang, D.He, Q.Hu, L.Lei, Q.Li, X.Li, F.Liu, G.Sun, L.Xie, J.Zhang. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in situ neutron diffraction. High Pressure Res., 39, 655-665(2019).

    [41] B.Chen, X.-p.Chen, L.-m.Fang, L.-h.Feng, D.-w.He, Q.-w.Hu, T.Irifune, Y.Kojima, Z.-l.Kou, L.Lei, H.Ohfuji, F.Peng, M.-f.Pu, L.Qi, Y.-h.Xia, L.-l.Zhang. Neutron powder diffraction and high-pressure synchrotron x-ray diffraction study of tantalum nitrides. Chin. Phys. B, 27, 026201(2018).

    [42] A.Inoue, A.Takeuchi. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans., 46, 2817-2829(2005).

    [43] Q.Hu, B.Johansson, K.Kokko, L.Vitos, G.Wang. Ab initio investigation of the elastic properties of Ni3Fe. Phys. Rev. B, 88, 174205(2013).

    [44] T.Bj?rkman, O.Eriksson, T.Gasche, P.Monachesi. Electronic structure and magnetic properties of Mn, Co, and Ni substitution of Fe in Fe4N. Phys. Rev. B, 88, 054420(2013).

    [46] R.Dronskowski, K.Guo, R.Niewa, Y.Prots, D.Rau, W.Schnelle, U.Schwarz, J.von Appen. High pressure high-temperature behavior and magnetic properties of Fe4N: Experiment and theory. High Pressure Res., 33, 684-696(2013).

    [48] R.Dronskowski, M.Hanfland, K.Meier, R.Niewa, D.Rau, U.Schwarz, M.Wessel, A.Wosylus. High-pressure high-temperature phase transition of γ′-Fe4N. J. Alloys Compd., 480, 76-80(2009).

    [49] T.Gressmann, A.Leineweber, Z.-K.Liu, E. J.Mittemeijer, S.Shang, U.Welzel, M.Wohlschl?gel. Elastic anisotropy of γ′-Fe4N and elastic grain interaction in γ′-Fe4N1−y layers on α-Fe: First-principles calculations and diffraction stress measurements. Acta Mater., 55, 5833-5843(2007).

    [50] K. D.Litasov, E.Ohtani, S. G.Ovchinnikov, D. S.Ponomarev, Z. I.Popov, A. F.Shatskiy. Phase transformations of Fe3N-Fe4N iron nitrides at pressures up to 30 GPa studied by in situ X-ray diffractometry. JETP Lett., 98, 805-808(2014).

    [51] W. T.Fu, Z. Q.Lv, Z. P.Shi, S. H.Sun, Z. H.Wang, W. H.Zhang. Electronic, magnetic and elastic properties of ε-phases Fe3X(X=B, C, N) from density-functional theory calculations. J. Magn. Magn. Mater., 324, 2271-2276(2012).

    [52] G.Chen, Y.-L.Du, Y.-J.Shi. First-principles study on the elastic and electronic properties of hexagonal ε-Fe3N. Comput. Mater. Sci., 67, 341-345(2013).

    [53] M.Chen, D.He, K.Leinenweber, Z.Lin, L.Wang, S.Wang, X.Yu, J.Zhang, R.Zhang, Y.Zhao, J.Zhu. Experimental invalidation of phase-transition-induced elastic softening in CrN. Phys. Rev. B, 86, 064111(2012).

    [54] H.-z.Fu, B.-s.Li, M.-x.Ren. Formation condition of solid solution type high-entropy alloy. Trans. Nonferrous Met. Soc. China, 23, 991-995(2013).

    Tools

    Get Citation

    Copy Citation Text

    Binbin Wu, Li Lei, Feng Zhang, Qiqi Tang, Shan Liu, Meifang Pu, Duanwei He, Yuanhua Xia, Leiming Fang, Hiroaki Ohfuji, Tetsuo Irifune. Pressure-induced disordering of site occupation in iron–nickel nitrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038401

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: High Pressure Physics and Materials Science

    Received: Dec. 9, 2020

    Accepted: Feb. 19, 2021

    Published Online: May. 21, 2021

    The Author Email:

    DOI:10.1063/5.0040041

    Topics