Laser & Optoelectronics Progress, Volume. 62, Issue 13, 1330001(2025)

X-Ray Fluorescence Spectroscopy Combined with MLP-DNN for Rapid Classification of Cosmetic Paper Packaging Boxes

Xingyu Ma1, Xiaoguang Hu1、*, Hong Jiang2、**, Baofa Hu1, Shijian Wang1, and Ji Man3
Author Affiliations
  • 1School of Investigation, People's Public Security University of China, Beijing 100038, China
  • 2Center of Forensic Science Beijing Hui Zheng Zhuo Yue Technology Co.,Ltd., Beijing 102446, China
  • 3Beijing Huayi Honrizon Technology Co., Ltd., Beijing 100123, China
  • show less
    Figures & Tables(10)
    Manual classification results of cosmetic paper packaging boxes
    Variation in clustering coefficient with categorical number
    Structure of MLP-DNN model
    Comparison of accuracies and macro average indicators for MLP-DNN and random forest
    Comparison of accuracies and macro average indicators for MLP-DNN, MLP, and DNN
    • Table 1. Informations of experimental samples

      View table

      Table 1. Informations of experimental samples

      Serial numberBrandSourceCase colourSerial numberBrandSourceCase colour
      1Forever KeyShanghaiWhite32HBNZhongshanPink
      2Kato-KatoSuzhouWhite33HBNZhongshanPink
      3Run PeiHuzhouWhite34Fog Island ForestShanghaiPink
      4Black TeaGuangzhouWhite35Estee LauderFranceBlue
      5Xi Mu YuanZhejiangWhite36L'OréalSuzhouBlue
      6MenowShantouWhite37Pu Qian NaGuangzhouBlue
      7La Roche-PosayFranceWhite38FlorasisZhongshanBlue
      8UkissShanghaiWhite39RockingzooShanghaiGreen
      9La Roche-PosayFranceWhite40WatercomeGuangzhouGreen
      10MenowShantouWhite41EverbabShanghaiBrown
      11Xun Hui JiHainanWhite42ChanelParriesBrown
      12Sha Qi NuoShantouPink43Black TeaGuangzhouYellow
      13AKFGuangdongPink44An Ye WuGuangzhouBrown
      14VeecciZhejiangPink45Marie BeautyShanghaiBrown
      15Sha Qi NuoShantouPink46Jian NanGuangzhouBrown
      16JillleenJiangyinPink47PerrierHangzhouSilver
      17Sha Qi NuoShantouPink48Jing Bai Ku ShuangGuangzhouSilver
      18Ju DuoShanghaiPink49Mo Fa Shi JiaGuangzhouSilver
      19HBNGuangzhouPink50CosmaxShanghaiSilver
      20FreshAmericaPink51PerrierHangzhouSilver
      21Zuo GuangGuangzhouWhite52PramyZhuhaiSilver
      22CurelTokyoWhite53AKFZhongshanSilver
      23Gu YuGuangzhouWhite54Hai ChangDanyangSilver
      24Mei KeJiangsuWhite55KikoShanghaiSilver
      25PerrierHuzhouWhite56Mei KeShanghaiSilver
      26AFUGuangzhouWhite57La Mei LaZhejiangBlack
      27Shu Dai ZiShanghaiWhite58La Mei LaYiwuBrown
      28RNWGuangzhouWhite59ShaqinuoShantouWhite
      29La Roche-PosaySuzhouWhite60ZeroShanghaiPink
      30Fontti FrattiGuangzhouWhite61HapsodeHangzhouBlue
      31RNWShanghaiWhite
    • Table 2. Results of reproducible experiments

      View table

      Table 2. Results of reproducible experiments

      ElementMean ± standard deviation /(μg·g-1Kurtosis /(μg·g-1Skewness /(μg·g-1Relative standard deviation /%
      Cl203.600±8.181-2.0740.5254.018
      Ca1293.200±31.9300.2700.2672.469
      Ti849.300±20.4510.8951.1862.408
      Fe1317.200±16.212-0.8560.1081.231
      Sr43.600±1.506-0.6710.6153.453
      Ba0±0
    • Table 3. Mass fractions of 6 elements in 10 samples

      View table

      Table 3. Mass fractions of 6 elements in 10 samples

      Serial numberClTiBaCaFeSr
      1027792844479348
      2050042745109056
      30005018521853
      402403569381544
      5089037677112456
      601228533103101049
      70199032759105148
      8079801584124143
      90254012485102350
      100678014182115446
    • Table 4. Training indicators of MLP-DNN model

      View table

      Table 4. Training indicators of MLP-DNN model

      IndicatorValue
      Accuracy0.89
      Macro averagePrecision is 0.94, recall is 0.84, F1-score is 0.87
      Weighted averagePrecision is 0.92, recall is 0.89, F1-score is 0.89
    • Table 5. Training indicators of random forest model

      View table

      Table 5. Training indicators of random forest model

      IndicatorValue
      Accuracy0.85
      Macro averagePrecision is 0.68, recall is 0.75, F1-score is 0.71
      Weighted averagePrecision is 0.74, recall is 0.85, F1-score is 0.78
    Tools

    Get Citation

    Copy Citation Text

    Xingyu Ma, Xiaoguang Hu, Hong Jiang, Baofa Hu, Shijian Wang, Ji Man. X-Ray Fluorescence Spectroscopy Combined with MLP-DNN for Rapid Classification of Cosmetic Paper Packaging Boxes[J]. Laser & Optoelectronics Progress, 2025, 62(13): 1330001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Nov. 15, 2024

    Accepted: Jan. 20, 2025

    Published Online: Jun. 12, 2025

    The Author Email: Xiaoguang Hu (michael.hu.07@foxmail.com), Hong Jiang (jiangh2001@163.com)

    DOI:10.3788/LOP242272

    CSTR:32186.14.LOP242272

    Topics