Laser & Optoelectronics Progress, Volume. 56, Issue 15, 150003(2019)

Review of Deep Learning-Based Semantic Segmentation

Xiangfu Zhang... Jian Liu*, Zhangsong Shi, Zhonghong Wu and Zhi Wang |Show fewer author(s)
Author Affiliations
  • College of Weapons Engineering, Naval University of Engineering, Wuhan, Hubei 430032, China
  • show less
    Figures & Tables(18)
    Diagram of basic composition of standard convolutional neural network
    Diagram of max pooling process
    Structural diagram of VGGNet model
    Inception module in GoogLeNet network
    Residual module in ResNet network
    Partial dataset images and corresponding semantic segmentation effect diagrams. (a) PASCAL VOC 2012; (b) PASCAL-CONTEXT; (c) MICROSOFT COCO; (d) CITYSCAPES
    Classification of common deep learning semantic segmentation methods
    FCN network processing diagram
    Structural diagram of SegNet model
    Effects of using CRF tuning iterations in DeepLab. (a) GT; (b) CNNout; (c) CRFit1; (d) CRFit2; (e) CRFit10
    Comparison of three models of CRFasRNN, FCN-8s, and DeepLab
    Diagram of pyramid pooling module in PSPNet
    Diagram of multi-scale CNN network architecture proposed by Roy
    Structural diagram of ReSeg model
    Diagram of GRU calculation process
    • Table 1. Information summary of common image classification networks

      View table

      Table 1. Information summary of common image classification networks

      ItemLeNet5AlexNetVGGNetGoogLeNetResNet
      Year19942012201420142015
      Layer781922152
      Conv251621151
      Kernel size511,5,337,1,3,57,1,3,5
      Linear33311
      Linear size120,84,104096,4096,10004096,4096,100010001000
      Activation functionSigmoidReLUReLUReLUReLU
      ClassifierMulti-layerperceptionSoftmaxSoftmaxSoftmaxSoftmax
      Data augment×
      Bath normalization××××
      Local responsenormalization×××
      Graphicsprocessing unit×
      Inception××××
      Dropout×
      TOP-5(error)N/A16.4%7.32%6.67%3.57%
    • Table 2. Information summary of common semantic segmentation datasets

      View table

      Table 2. Information summary of common semantic segmentation datasets

      DatasetClassesSample(training)Sample(validation)Sample(test)PurposeYear
      PASCAL VOC 2012[18]21146414491452Generic2012
      PASCAL VOC 2012+[19]211058214491452Generic2014
      PASCAL-CONTEXT[20]54049985105-Generic2014
      PASCAL-PERSON-PART[20]61716-1817Person2014
      PASCAL-COW-PART[21]4294-227Cow2015
      SBD[22]2184982857-Generic2011
      MICROSOFT COCO[23]80+827834050481434Generic2014
      CITYSCAPES(fine)[24]1929755001525Urban2015
      CITYSCAPES(coarse)[24]1922973500-Urban2015
      CAMVID[25-26]32361100233Driving2009
      KITTI-Ros[27]11170-46Driving2015
      KITTI-Zhang[28]10140-112Driving2015
    • Table 3. Information summary of common deep learning semantic segmentation methods

      View table

      Table 3. Information summary of common deep learning semantic segmentation methods

      Model nameYearArchitectureAccuracyEfficiencyTrainingContribution
      FCN[32]2015VGG-16(FCN)CCCForerunner
      SegNet[33]2017VGG-16 + DecoderABCEncoder-decoder
      DeepLab[34-37]2017VGG-16 + ResNet-101ACCStandalone CRF,Atrous convolutions
      CRFasRNN[38]2015FCN-8sCBACRF reformulated as RNN
      ParseNet[39]2015VGG-16ACCGlobal context feature fusion
      SharpMask [40]2016DeepMaskACCTop-down refinement module
      PSPNet[41]2016ResNet-101ABCPyramid pooling module
      Multi-scale-CNN-Raj[42]2015VGG-16(FCN)ACCMulti-scale architecture
      Multi-scale-CNN-Eigen[43]2015CustomACCMulti-scalesequential refinement
      Multi-scale-CNN-Roy[44]2016Multi-scale-CNN-EigenACCMulti-scale coarse-to-fine refinement
      Multi-scale-CNN-Bian[45]2016FCNBCBIndependently trainedMulti-scale FCNs
      ReSeg[46]2016VGG-16 + ReNetBCCExtension of ReNet tosemantic segmentation
      LSTM-CF[47]2016Fast R-CNN +DeepMaskACCFusion of contextualinformationfrom multiple sources
      RCNN[48]2014MDRNNABCDifferent input sizes,image context
      2D-LSTM[49]2015MDRNNBBCImage context modelling
      DAG-RNN [50]2015Elman networkACCGraph image structurefor context modelling
      MINC-CNN[51]2015GoogLeNet(FCN)CCCPatchwise CNN,Standalone CRF
      DeepMask[52]2015VGG-AACCProposals generationfor segmentation
    Tools

    Get Citation

    Copy Citation Text

    Xiangfu Zhang, Jian Liu, Zhangsong Shi, Zhonghong Wu, Zhi Wang. Review of Deep Learning-Based Semantic Segmentation[J]. Laser & Optoelectronics Progress, 2019, 56(15): 150003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Jan. 25, 2019

    Accepted: Mar. 5, 2019

    Published Online: Aug. 5, 2019

    The Author Email: Liu Jian (liujian_nue@163.com)

    DOI:10.3788/LOP56.150003

    Topics