Acta Optica Sinica, Volume. 41, Issue 21, 2127001(2021)

Coherent Optical Transmission Characteristics Based on Magneto-Optical Force System

Baocheng Hou and Huajun Chen*
Author Affiliations
  • School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • show less
    References(29)

    [1] Agarwal G S, Huang S M. Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes[J]. New Journal of Physics, 16, 033023(2014).

    [2] Chen H J, Fang X W, Chen C Z et al. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics[J]. Acta Physica Sinica, 65, 194205(2016).

    [3] Wang J. Nonreciprocity in a three-cavity optomechanical system[J]. Laser & Optoelectronics Progress, 57, 191201(2020).

    [5] Zhang X F, Zou C L, Jiang L et al. Strongly coupled magnons and cavity microwave photons[J]. Physical Review Letters, 113, 156401(2014).

    [6] Han X, Yang P F, Ge R F et al. Efficient preparation and optimization of atomic internal states in high-finesse optical microcavity[J]. Chinese Journal of Lasers, 47, 0812001(2020).

    [7] Bourhill J, Kostylev N, Goryachev M et al. Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere[J]. Physical Review B, 93, 144420(2016).

    [8] Kostylev N, Goryachev M, Tobar M E. Superstrong coupling of a microwave cavity to yttrium iron garnet magnons[J]. Applied Physics Letters, 108, 062402(2016).

    [9] Huebl H, Zollitsch C W, Lotze J et al. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids[J]. Physical Review Letters, 111, 127003(2013).

    [10] Tabuchi Y, Ishino S, Ishikawa T et al. Hybridizing ferromagnetic magnons and microwave photons in the quantum limit[J]. Physical Review Letters, 113, 083603(2014).

    [11] Lambert N J, Haigh J A, Ferguson A J. Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity[J]. Journal of Applied Physics, 117, 053910(2015).

    [12] Goryachev M, Farr W G, Creedon D L et al. High-cooperativity cavity QED with magnons at microwave frequencies[J]. Physical Review Applied, 2, 054002(2014).

    [13] Wang B, Liu Z X, Kong C et al. Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system[J]. Optics Express, 26, 20248-20257(2018).

    [14] Wu J B, Zhang S C, Hu Y Q et al. Intracavity electromagnetically induced transparency and its linewidth under a weak control field[J]. Acta Optica Sinica, 38, 0727002(2018).

    [15] Wang Y P, Zhang G Q, Zhang D K et al. Bistability of cavity magnon polaritons[J]. Physical Review Letters, 120, 057202(2018).

    [16] Tabuchi Y, Ishino S, Noguchi A et al. Coherent coupling between a ferromagnetic magnon and a superconducting qubit[J]. Science, 349, 405-408(2015).

    [17] Wallraff A, Schuster D I, Blais A et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics[J]. Nature, 431, 162-167(2004).

    [18] Samkharadze N, Zheng G, Kalhor N et al. Strong spin-photon coupling in silicon[J]. Science, 359, 1123-1127(2018).

    [19] Li J, Zhu S Y, Agarwal G S. Magnon-photon-phonon entanglement in cavity magnomechanics[J]. Physical Review Letters, 121, 203601(2018).

    [20] Kong C, Wang B, Liu Z X et al. Magnetically controllable slow light based on magnetostrictive forces[J]. Optics express, 27, 5544-5556(2019).

    [21] Bai L H, Harder M, Chen Y P et al. Spin pumping in electrodynamically coupled magnon-photon systems[J]. Physical Review Letters, 114, 227201(2015).

    [22] Rameshti B Z, Cao Y S. Bauer G E W. Magnetic spheres in microwave cavities[J]. Physical Review B, 91, 214430(2015).

    [23] Osada A, Hisatomi R, Noguchi A et al. Cavity optomagnonics with spin-orbit coupled photons[J]. Physical Review Letters, 116, 223601(2016).

    [24] Braggio C, Carugno G, Guarise M et al. Optical manipulation of a magnon-photon hybrid system[J]. Physical Review Letters, 118, 107205(2017).

    [25] Li J, Zhu S Y, Agarwal G S. Squeezed states of magnons and phonons in cavity magnomechanics[J]. Physical Review A, 99, 021801(2019).

    [26] Kittel C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals[J]. Physical Review, 110, 836(1958).

    [27] Qin F, Liu Y, Meng Z M et al. Design of Kerr-effect sensitive microcavity in nonlinear photonic crystal slabs for all-optical switching[J]. Journal of Applied Physics, 108, 053108(2010).

    [28] Yang S, Al-Amri M, Evers J et al. Controllable optical switch using a Bose-Einstein condensate in an optical cavity[J]. Physical Review A, 83, 053821(2011).

    [29] Zhang D K, Wang X M, Li T F et al. Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere[J]. npj Quantum Information, 1, 15014(2015).

    Tools

    Get Citation

    Copy Citation Text

    Baocheng Hou, Huajun Chen. Coherent Optical Transmission Characteristics Based on Magneto-Optical Force System[J]. Acta Optica Sinica, 2021, 41(21): 2127001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Quantum Optics

    Received: Mar. 18, 2021

    Accepted: May. 18, 2021

    Published Online: Nov. 17, 2021

    The Author Email: Chen Huajun (chenphysics@126.com)

    DOI:10.3788/AOS202141.2127001

    Topics