Infrared Technology, Volume. 43, Issue 9, 852(2021)
Infrared Pedestrian Action Recognition Based on Improved Spatial-temporal Two-stream Convolution Network
[1] [1] Karpathy A, Toderici G, Shetty S, et al. Large- scale video classification with convolutional neural networks[C]// CVPR, 2014: 1725-1732.
[2] [2] Tran D, Bourdev L D, Fergus R, et al. Learning spatiotem-poral features with 3d convolutional networks[C]//ICCV, 2015: 4489-4497.
[3] [3] ZHANG B, WANG L, WANG Z, et al. Real-time action recognition with enhanced motion vector CNNs[C]//CVPR, 2016: 2718-2726.
[4] [4] Niebles J C, CHEN C W, LI F F. Modeling temporal structure of decomposable motion segments for activity classification[C]// ECCV,2010: 392-405.
[5] [5] Tumas P, Nowosielski A, Serackis A. Pedestrian detection in severe weather conditions[J]. IEEE Access, 2020, 8: 62775-62784.
[8] [8] Varol G, Laptev I, Schmid C. Long-term temporal convolutions for action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 40(6): 1510-1517.
[9] [9] Donahue J, Anne Hendricks L, Guadarrama S, et al. Long-term Recurrent Convolutional Networks for Visual Recognition and Description[M].Elsevier, 2015: 2625-2634.
[10] [10] Soomro K, Zamir A R, Shah M. A dataset of 101 human actions classes from videos in the wild[J/OL]. Computer Vision and Pattern Recognition, arXiv: 1212.0402, 2012.
[11] [11] Kuehne H, Jhuang H, Garrote E, et al. HMDB: A large video database for human motion recognition[C]//ICCV, 2011: 2556-2563.
[12] [12] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//ICML, 2015: 448-456.
[13] [13] WANG L, QIAO Y, TANG X. Video action detection with relational dynamic- poselets[C]//ECCV, 2014: 565-580.
[14] [14] GAN C, YAO T, YANG K, et a. You lead, we exceed: Labor-free video concept learning by jointly exploiting web videos and images[C]//CVPR, 2016: 923-932.
[15] [15] Simonyan K, Zisserman A. Two-Stream Convolutional Networks for Action Recognition in Videos[J]. Advances in Neural Information Processing Systems, 2014, 150: 109-125.
[17] [17] Yasin H, Hussain M, Weber A. Keys for Action: An Efficient Keyframe-Based Approach for 3D Action Recognition Using a Deep Neural Network[J]. Sensors, 2020, 20(8): 2226.
[18] [18] GAO Chenqiang, DU Yinhe, LIU Jiang, et al. InfAR dataset: Infrared action recognition at different times[J]. Neurcomputing, 2016,212:36-47.
[19] [19] WANG H, SCHMID C. Action recognition with improved trajectories[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 3551-3558.
[20] [20] Du Tran, Lubomir Bourdev, Rob Fergus, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE, International Conference on Computer Vision. Piscataway:IEEE, 2015: 4489-4497.
[22] [22] LIN S, JIA K, CHEN K, et al. Lattice long short-term memory for human action recognition[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE,2017: 2166-2175.
[23] [23] Carrlira J, Gisslrman A. Quo vadis. action recognition? A new model and the kinetics dataset[C]//Proceedings of the 2017 IEEE, Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017:4724-4733.
[24] [24] SUN S, KUANG Z, SHENG L, et al. Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 20118-20132.
Get Citation
Copy Citation Text
JIANG Yi, HOU Liping, ZHANG Qiang. Infrared Pedestrian Action Recognition Based on Improved Spatial-temporal Two-stream Convolution Network[J]. Infrared Technology, 2021, 43(9): 852