Journal of Inorganic Materials, Volume. 40, Issue 2, 184(2025)
[1] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 4271(2004).
[2] RAMASAMY H V, KALIYAPPAN K, THANGAVEL R et al. Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties[J]. Journal of Materials Chemistry A, 8408(2017).
[3] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 3529(2017).
[4] XIA J L, YAN D, GUO L P et al. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium- ion storage[J]. Advanced Materials, 2000447(2020).
[6] HOU H S, QIU X Q, WEI W F et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 1602898(2017).
[7] CAO D, YIN C, SHI D et al. Cubic perovskite fluoride as open framework cathode for Na-ion batteries[J]. Advanced Functional Materials, 1701130(2017).
[8] HAN Y, HU J, YIN C et al. Iron-based fluorides of tetragonal tungsten bronze structure as potential cathodes for Na-ion batteries[J]. Journal of Materials Chemistry A, 7382(2016).
[9] YUAN Y, WEI Q Y, YANG S K et al. Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries[J]. Energy Storage Materials, 760(2022).
[10] AVDEEV M, MOHAMED Z, LING C D et al. Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries[J]. Inorganic Chemistry, 8685(2013).
[11] JIAN Z L, ZHAO L, PAN H L et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications, 86(2012).
[12] CHOTARD J N, ROUSSE G, DAVID R et al. Cheminform abstract: discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature[J]. Chemistry of Materials, 5982(2015).
[13] LIU Q N, HU Z, CHEN M Z et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides
[14] PAOLELLA A, FAURE C, TIMOSHEVSKII V et al. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives[J]. Journal of Materials Chemistry A, 18919(2017).
[15] LIU X Y, CAO Y, SUN J. Defect engineering in Prussian blue analogs for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2202532(2022).
[16] WEI F, ZHANG Q, ZHANG P et al. Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 050524(2021).
[17] LI W, HAN C, WANG W et al. Stress distortion restraint to boost the sodium ion storage performance of a novel binary hexacyanoferrate[J]. Advanced Energy Materials, 1903006(2020).
[18] HASA I, BUCHHOLZ D, PASSERINI S et al. High performance Na0.5[Ni0.23Fe0.13Mn0.63]O2 cathode for sodium-ion batteries[J]. Advanced Energy Materials, 1400083(2014).
[19] KONG G Q, LENG M Z, ZHOU Z R et al. Sb doped O3 type Na0.9Ni0.5Mn0.3Ti0.2O2 cathode material for Na-ion battery[J]. Journal of Inorganic Materials, 656(2023).
[20] DAI K, MAO J, SONG X et al. Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized
[21] KUBOTA K, KUMAKURA S, YODA Y et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals)[J]. Advanced Energy Materials, 1703415(2018).
[22] BIANCHINI M, WANG J, CLEMENT R J et al. The interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides[J]. Nature Materials, 1088(2020).
[23] LU Z, DAHN J R.
[24] YOU Y, MANTHIRAM A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 1701785(2017).
[26] WANG F, PENG B, ZENG S Y et al. Activating oxygen redox in layered Na
[27] LIU Z B, SHEN J D, FENG S H et al. Ultralow volume change of P2-type layered oxide cathode with controlled phase transition by regulating distribution of Na[J]. Angewandte Chemie International Edition, 20960(2021).
[28] ZHENG W, LIU Q, WANG Z et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries[J]. Energy Storage Materials, 300(2020).
[29] CHENG Z, ZHAO B, GUO Y et al. Mitigating the large-volume phase transition of P2-type cathodes by synergetic effect of multiple ions for improved sodium-ion batteries[J]. Advanced Energy Materials, 2103461(2022).
[30] BAI X, SATHIYA M, MENDOZA-SANCHEZ B et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1-
[31] SHEN M Y, WANG J S, REN Z et al. Quasi-zero volume strain cathode materials for sodium ion battery through synergetic substitution effect of Li and Mg[J]. Advanced Functional Materials, 2303812(2023).
[32] ZHANG X J, LI J L, QIU W J et al. Electrochemical activity of positive electrode material of P2-Na
[33] WANG P F, YOU Y, YIN Y X et al. Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries[J]. Angewandte Chemie International Edition, 7445(2016).
[34] TAPIA-RUIZ N, DOSE W M, SHARMA N et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-
[35] LU Z, DAHN J R. Intercalation of water in P2, T2 and O2 structure A
[36] LI L, XU M, YAO Q et al. Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries[J]. ACS Applied Materials & Interfaces, 30879(2016).
[37] KRESSE G, FURTHMULLER J. Efficient iterative schemes for
[38] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1758(1999).
[40] GRIMME S, J ANTONY, S EHRLICH et al. A consistent and accurate
[42] DUDAREV S L, BOTTON G A, SAVRASOV S Y et al. Electron- energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1505(1998).
[43] WANG V, XU N, LIU J C et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 108033(2021).
[44] HENKELMAN G, ARNALDSSON A, JÓNSSON H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 354(2006).
[45] HU Z, NIU Y, RONG X et al. Suppression of voltage decay through Ni3+ barrier in anionic-redox active cathode for Na-ion batteries[J]. Acta Physico-Chimica Sinica, 2306005(2024).
[46] YANG L, LI X, MA X et al. Design of high-performance cathode materials with single-phase pathway for sodium ion batteries: a study on P2-Na
[47] LI C, ZHAO C, HU B et al. Unraveling the critical role of Ti substitution in P2-Na
[48] YANG L, KUO L Y, JUAN M L DEL A et al. Structural aspects of P2-type Na0.67Mn0.6Ni0.2Li0.2O2 (MNL) stabilization by lithium defects as a cathode material for sodium-ion batteries[J]. Advanced Functional Materials, 2102939(2021).
[49] PEER B, MARTIN W, JESUS G J et al. Solvent co-intercalation- induced activation and capacity fade mechanism of few-/multi- layered MXenes in lithium ion batteries[J]. Small, 2104130(2021).
[50] JAMES W S, ADAM S, NURIA T R et al. Nature of the “Z”-phase in layered Na-ion battery cathodes[J]. Energy & Environmental Science, 2223(2019).
Get Citation
Copy Citation Text
Zhijie ZHU, Mingyuan SHEN, Tao WU, Wencui LI.
Category:
Received: Jul. 10, 2024
Accepted: --
Published Online: Apr. 24, 2025
The Author Email: Wencui LI (wencuili@dlut.edu.cn)