Remote Sensing Technology and Application, Volume. 40, Issue 2, 388(2025)
Analyzing Variations in African Burned Areas based on 30 m Resolution Burned Area Products
[1] ABATZOGLOU J T, WILLIAMS A P, BARBERO R. Global emergence of anthropogenic climate change in fire weather indices. Geophysical Research Letters, 46, 326-336(2019).
[2] BOND W J, WOODWARD F I, MIDGLEY G F. The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525-538(2005).
[3] CHUVIECO E, LIZUNDIA-LOIOLA J, PETTINARI M L et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth System Science Data, 10, 2015-2031(2018).
[4] ANDELA N, VAN DER WERF G R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4, 791-795(2014).
[5] GIGLIO L, RANDERSON J T, VAN DER WERF G R. Analysis of daily, monthly, and annual burned area using the fourth-generation Global Fire Emissions Database(GFED4). Journal of Geophysical Research: Biogeosciences, 118, 317-328(2013).
[6] ROY D P, JIN Y, LEWIS P E et al. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97, 137-162(2005).
[7] TANSEY K, GRÉGOIRE J M, STROPPIANA D et al. Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. Journal of Geophysical Research: Atmospheres, 109(2004).
[8] SIMON M, PLUMMER S, FIERENS F et al. Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification. Journal of Geophysical Research: Atmospheres, 109(2004).
[9] TANSEY K, GRÉGOIRE J M, DEFOURNY P et al. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophysical Research Letters, 35(2008).
[10] PLUMMER S, ARINO O, SIMON M et al. Establishing a earth observation product service for the terrestrial carbon community:The globcarbon initiative. Mitigation and Adaptation Strategies for Global Change, 11, 97-111(2006).
[11] GIGLIO L, BOSCHETTI L, ROY D P et al. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217, 72-85(2018).
[12] LONG T F, ZHANG Z M, HE G J et al. 30 m Resolution global annual burned area mapping based on landsat images and Google Earth Engine. Remote Sensing, 11, 489(2019).
[13] RAMO R, ROTETA E, BISTINAS I et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proceedings of the National Academy of Sciences, 118(2021).
[14] RANDERSON J T, CHEN Y, VAN DER WERF G R et al. Global burned area and biomass burning emissions from small fires:Burned area from small fires. Journal of Geophysical Research: Biogeosciences, 117, DOI:10.1029/2012JG002128(2012).
[15] PUTTICK J R, TIMM HOFFMAN M, O’CONNOR T G. The effect of changes in human drivers on the fire regimes of South African grassland and Savanna environments over the past 100 years. African Journal of Range & Forage Science, 39, 107-123(2022).
[16] ARCHIBALD S, ROY D P, VAN WILGEN B W et al. What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology, 15, 613-630(2009).
[17] WU C, VENEVSKY S, SITCH S et al. Historical and future global burned area with changing climate and human demography. One Earth, 4, 517-530(2021).
[18] BOWMAN D M J S, BALCH J, ARTAXO P et al. The human dimension of fire regimes on earth. Journal of Biogeography, 38, 2223-2236(2011).
[19] COLLIER P, CONWAY G, VENABLES T. Climate change and Africa. Oxford Review of Economic Policy, 24, 337-353(2008).
[20] DARAMOLA M T, XU M. Recent changes in global dryland temperature and precipitation. International Journal of Climatology, 42, 1267-1282(2022).
[21] GIANNINI A, BIASUTTI M, HELD I M et al. A global perspective on African climate. Climatic Change, 90, 359-383(2008).
[22] PU Dongchuan, ZHANG Zhaoming, LONG Tengfei et al. GABAM2010 accuracy assessment using stratified random sampling. Journal of Remote Sensing, 24, 550-558(2020).
[24] GLANTZ M H, RAMIREZ I J. Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. International Journal of Disaster Risk Science, 11, 394-403(2020).
[25] NABILAH F, PRASETYO Y, SUKMONO A. Analisis pengaruh fenomena EL NINO dan LA NINA terhadap curah hujan tahun 1998-2016 Menggunakan Indikator Oni(oceanic nino index)(Studi Kasus :Provinsi Jawa Barat). Jurnal Geodesi Undip, 6, 402-412(2017).
[27] GOVINDARAJULU Z. Rank Correlation Methods (5th ed.). Technometrics, 34, 108-108(1992).
[28] MANN H B. Nonparametric tests against trend. Econometrica, 13, 245-259(1945).
[29] LANZANTE J R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. International Journal of Climatology, 16, 1197-1226(1996).
[30] YADAV R, TRIPATHI S K, PRANUTHI G et al. Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. Journal of Agrometeorology, 16, 164-171(2014).
[31] CHIKODILI N B, ABDULMALIK M D, ABISOYE O A et al. Outlier Detection in Multivariate Time Series Data Using a Fusion of K-Medoid, Standardized Euclidean Distance and Z-Score, 259-271(2021).
[32] SEN P K. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389(1968).
[33] THEIL H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis, 345-381(1992).
[34] VENKATAANUSHA P, ANURADHA C, ASSISTANT P et al. Detecting outliers in high dimensional data sets using Z-Score methodology. International Journal of Innovative Technology and Exploring Engineering, 9, 48-53(2019).
[35] VERHEGGHEN A, CECCHERINI G et al. The potential of Sentinel satellites for burnt area mapping and monitoring in the Congo basin forests. Remote Sensing, 8, 986(2016).
[36] PUTTICK J R, TIMM HOFFMAN M, O’CONNOR T G. The effect of changes in human drivers on the fire regimes of South African grassland and Savanna environments over the past 100 years. African Journal of Range & Forage Science, 39, 107-123(2022).
[37] ZUBKOVA M, BOSCHETTI L, ABATZOGLOU J T et al. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophysical Research Letters, 46, 7643-7653(2019).
[38] ARCHIBALD S, STAVER A C, LEVIN S A. Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences, 109, 847-852(2012).
[39] ROTETA E, BASTARRIKA A, PADILLA M et al. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sensing of Environment, 222, 1-17(2019).
[40] ROY D P, HUANG H, BOSCHETTI L et al. Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach. Remote Sensing of Environment, 231, 111254(2019).
[41] YUAN Yuan, GAO Hui, JIA Xiaolong et al. The climate impact of the super El Niño event in 2014-2016. Meteorology, 42, 532-539(2016).
[42] NGUYEN HUY T, ADJOGNON G S, VAN SOEST D. Combatting Forest Fires in the Drylands of Sub-Saharan Africa: Quasi-Experimental Evidence from Burkina Faso(2023).
[43] HOFFMANN W A, ADASME R, HARIDASAN M et al. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology, 90, 1326-1337(2009).
[44] FISCHER R. The long-term consequences of forest fires on the carbon fluxes of a tropical forest in Africa. Applied Sciences, 11, 4696(2021).
[45] ARCHIBALD S, BOND W J, HOFFMANN W et al. Distribution and Determinants of Savannas, 1-24(2019).
[46] D’ONOFRIO D, BAUDENA M, LASSLOP G et al. Linking Vegetation-climate-fire relationships in sub-saharan africa to key ecological processes in two dynamic global vegetation models. Frontiers in Environmental Science, 8(2020).
[47] MAGNANI M, DÍAZ-SIERRA R, SWEENEY L et al. Fire responses shape plant communities in a minimal model for fire ecosystems across the world. The American Naturalist(2023).
[48] Archibald S, Lehmann C E, Belcher C M et al. Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters, 2018 13.
[49] BAUDENA M, SANTANA V M, BAEZA M et al. Increased aridity drives post‐fire recovery of Mediterranean forests towards open shrublands. The New Phytologist, 225, 1500-1515(2020).
Get Citation
Copy Citation Text
. Analyzing Variations in African Burned Areas based on 30 m Resolution Burned Area Products[J]. Remote Sensing Technology and Application, 2025, 40(2): 388
Category:
Received: Sep. 12, 2023
Accepted: --
Published Online: May. 23, 2025
The Author Email: