Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1437002(2025)

Few-Shot Fine-Grained Image Classification Based on Multiscale Joint Distribution

Shudong Liu, Zeyu Hao, Honghui Wang, Jia Cong, and Boyu Gu*
Author Affiliations
  • School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
  • show less
    Figures & Tables(11)
    Fine-grained classification network of the MS-JDFM model
    Dataset example images. (a) CUB-200-2011; (b) Stanford Cars
    Model convergence on CUB-200-2011 dataset
    Model loss on CUB-200-2011 dataset
    Heatmap comparison
    • Table 1. Information of experimental datasets

      View table

      Table 1. Information of experimental datasets

      DatasetNumber of categories
      TotalTraining setValidation setTest set
      CUB-200-20112001005050
      Stanford Cars1961301749
    • Table 2. Classification accuracy on CUB-200-2011

      View table

      Table 2. Classification accuracy on CUB-200-2011

      MethodAccuracy /%
      5-way 1-shot5-way 5-shot
      MAML2268.42±1.0783.47±0.62
      Baseline++2367.02±0.9083.58±0.54
      MatchNet2471.87±0.8585.08±0.57
      ProtoNet1280.90±0.4389.81±0.23
      FRN1582.55±0.1992.98±0.10
      ADM2579.31±0.4390.69±0.21
      CovNet2680.76±0.4292.05±0.20
      Meta DeepBDC1985.55±0.4093.82±0.17
      FS-FGIC2786.14±0.1895.08±0.09
      MS-JDFM(ours)87.22±0.2096.51±0.18
    • Table 3. Classification accuracy on Stanford Cars

      View table

      Table 3. Classification accuracy on Stanford Cars

      MethodAccuracy /%
      5-way 1-shot5-way 5-shot
      DN42861.51±0.4489.60±0.44
      MsKPRN2976.64±0.8489.88±0.46
      BSNet3067.48±0.2286.88±0.50
      SAML3175.74±0.2088.73±0.49
      FRN1584.01±0.1793.75±0.07
      CTX3285.03±0.1992.63±0.11
      ProtoNet1283.46±0.1992.08±0.08
      Meta DeepBDC1988.26±0.2694.13±0.13
      FS-FGIC2788.96±0.3795.16±0.20
      MS-JDFM(ours)90.65±0.1297.78±0.37
    • Table 4. Comparison of model parameter quantities

      View table

      Table 4. Comparison of model parameter quantities

      MethodNumber of parameters /106Stanford Cars accuracy /%
      DeepBDC1912.894.13±0.13
      FS-FGIC2714.396.12±0.17
      MS-JDFM(ours)13.597.78±0.37
    • Table 5. Ablation experiment results on CUB-200-2011

      View table

      Table 5. Ablation experiment results on CUB-200-2011

      MethodAccuracy /%
      5-way 1-shot5-way 5-shot
      DeepBDC85.55±0.4093.82±0.17
      A85.96±0.4294.35±0.20
      B86.85±0.4096.12±0.17
      MS-JDFM(ours)87.22±0.2096.51±0.18
    • Table 6. Ablation experiment results on Stanford Cars

      View table

      Table 6. Ablation experiment results on Stanford Cars

      MethodAccuracy /%
      5-way 1-shot5-way 5-shot
      DeepBDC88.26±0.2694.13±0.13
      A88.86±0.1994.88±0.08
      B90.22±0.2697.34±0.13
      MS-JDFM(ours)90.65±0.1297.78±0.37
    Tools

    Get Citation

    Copy Citation Text

    Shudong Liu, Zeyu Hao, Honghui Wang, Jia Cong, Boyu Gu. Few-Shot Fine-Grained Image Classification Based on Multiscale Joint Distribution[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1437002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 1, 2024

    Accepted: Feb. 18, 2025

    Published Online: Jul. 11, 2025

    The Author Email: Boyu Gu (guboyu1101@163.com)

    DOI:10.3788/LOP242207

    CSTR:32186.14.LOP242207

    Topics