Acta Optica Sinica, Volume. 44, Issue 10, 1026004(2024)

Light Field Manipulation Based on On-Chip Integrated Artificial Microstructures (Invited)

Yanchun Wang1, Yuebian Zhang1、*, Hua Cheng1、**, and Shuqi Chen1,2、***
Author Affiliations
  • 1The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    References(156)

    [1] Cheben P, Halir R, Schmid J H et al. Subwavelength integrated photonics[J]. Nature, 560, 565-572(2018).

    [2] Zhu D, Shao L B, Yu M J et al. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 13, 242-352(2021).

    [3] Zhang Y B, Liu H, Cheng H et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electronic Advances, 3, 200002(2020).

    [4] Ni X J, Wong Z J, Mrejen M et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 349, 1310-1314(2015).

    [5] Yang Y H, Jing L Q, Zheng B et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Advanced Materials, 28, 6866-6871(2016).

    [6] Li Y, Kita S, Muñoz P et al. On-chip zero-index metamaterials[J]. Nature Photonics, 9, 738-742(2015).

    [7] Tang H N, DeVault C, Camayd-Muñoz S A et al. Low-loss zero-index materials[J]. Nano Letters, 21, 914-920(2021).

    [8] Poddubny A, Iorsh I, Belov P et al. Hyperbolic metamaterials[J]. Nature Photonics, 7, 948-957(2013).

    [9] Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes[J]. Nature Communications, 5, 3226(2014).

    [10] He Q, Sun S L, Xiao S Y et al. High-efficiency metasurfaces: principles, realizations, and applications[J]. Advanced Optical Materials, 6, 1800415(2018).

    [11] Ding F, Pors A, Bozhevolnyi S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 81, 026401(2018).

    [12] Chen S Q, Li Z, Zhang Y B et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 6, 1800104(2018).

    [13] Wen D D, Yue F Y, Liu W W et al. Geometric metasurfaces for ultrathin optical devices[J]. Advanced Optical Materials, 6, 1800348(2018).

    [14] Nemati A, Wang Q, Hong M H et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 1, 180009(2018).

    [15] Chen S Q, Zhang Y B, Li Z et al. Empowered layer effects and prominent properties in few-layer metasurfaces[J]. Advanced Optical Materials, 7, 1801477(2019).

    [16] Cheng H, Liu Z C, Chen S Q et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Advanced Materials, 27, 5410-5421(2015).

    [17] Cheng H, Chen S Q, Yang H F et al. A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime[J]. Journal of Optics, 14, 085102(2012).

    [18] Li J X, Yu P, Tang C C et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces[J]. Advanced Optical Materials, 5, 1700152(2017).

    [19] Li Z C, Liu W W, Tang C C et al. A bilayer plasmonic metasurface for polarization-insensitive bidirectional perfect absorption[J]. Advanced Theory and Simulations, 3, 1900216(2020).

    [20] Liu W W, Chen S Q, Li Z C et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 40, 3185-3188(2015).

    [21] Wu P C, Tsai W Y, Chen W T et al. Versatile polarization generation with an aluminum plasmonic metasurface[J]. Nano Letters, 17, 445-452(2017).

    [22] Liu Z C, Li Z C, Liu Z et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 4, 2061-2069(2017).

    [23] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [24] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [25] Liu Z C, Li Z C, Liu Z et al. High-performance broadband circularly polarized beam deflector by mirror effect of multinanorod metasurfaces[J]. Advanced Functional Materials, 25, 5428-5434(2015).

    [26] Li Z C, Liu W W, Cheng H et al. Manipulation of the photonic spin Hall effect with high efficiency in gold-nanorod-based metasurfaces[J]. Advanced Optical Materials, 5, 1700413(2017).

    [27] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [28] Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components[J]. Science, 358, eaam8100(2017).

    [29] Liu W W, Li Z C, Cheng H et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 30, 1706368(2018).

    [30] Zuo R Z, Liu W W, Cheng H et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Advanced Optical Materials, 6, 1800795(2018).

    [31] Liu W W, Ma D N, Li Z C et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array[J]. Optica, 7, 1706-1713(2020).

    [32] Wan W W, Gao J, Yang X D. Metasurface holograms for holographic imaging[J]. Advanced Optical Materials, 5, 1700541(2017).

    [33] Ma D N, Li Z C, Liu W W et al. Deep-learning enabled multicolor meta-holography[J]. Advanced Optical Materials, 10, 2102628(2022).

    [34] Gao H, Fan X H, Xiong W et al. Recent advances in optical dynamic meta-holography[J]. Opto-Electronic Advances, 4, 210030(2021).

    [35] Yang B, Liu W W, Li Z C et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 6, 1701009(2018).

    [36] Yang B, Cheng H, Chen S Q et al. Structural colors in metasurfaces: principle, design and applications[J]. Materials Chemistry Frontiers, 3, 750-761(2019).

    [37] Yang B, Liu W W, Li Z C et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces[J]. Nano Letters, 19, 4221-4228(2019).

    [38] Yang B, Ma D N, Liu W W et al. Deep-learning-based colorimetric polarization-angle detection with metasurfaces[J]. Optica, 9, 217-220(2022).

    [39] Liu S, Cui T J. Concepts, working principles, and applications of coding and programmable metamaterials[J]. Advanced Optical Materials, 5, 1700624(2017).

    [40] Li Z, Liu W W, Li Z C et al. Tripling the capacity of optical vortices by nonlinear metasurface[J]. Laser & Photonics Reviews, 12, 1800164(2018).

    [41] Ma M L, Li Z, Liu W W et al. Optical information multiplexing with nonlinear coding metasurfaces[J]. Laser & Photonics Reviews, 13, 1900045(2019).

    [42] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2, 17010(2017).

    [43] Li Z, Liu W W, Geng G Z et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 30, 1910744(2020).

    [44] Hao Z L, Liu W W, Li Z C et al. Full complex-amplitude modulation of second harmonic generation with nonlinear metasurfaces[J]. Laser & Photonics Reviews, 15, 2100207(2021).

    [45] Chen S M, Li G X, Cheah K W et al. Controlling the phase of optical nonlinearity with plasmonic metasurfaces[J]. Nanophotonics, 7, 1313-1024(2018).

    [46] Jiang Y F, Liu W W, Li Z C et al. Linear and nonlinear optical field manipulations with multifunctional chiral coding metasurfaces[J]. Advanced Optical Materials, 11, 2202186(2023).

    [47] Rodríguez-Fortuño F J, Espinosa-Soria A, Martínez A. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics[J]. Journal of Optics, 18, 123001(2016).

    [48] Chen Y P, Yin Y, Ma L B et al. Recent progress on optoplasmonic whispering-gallery-mode microcavities[J]. Advanced Optical Materials, 9, 2100143(2021).

    [49] Meng Y, Chen Y Z, Lu L H et al. Optical meta-waveguides for integrated photonics and beyond[J]. Light, Science & Applications, 10, 235(2021).

    [50] Wang Z, Xiao Y H, Liao K et al. Metasurface on integrated photonic platform: from mode converters to machine learning[J]. Nanophotonics, 11, 3531-3546(2022).

    [51] Yang Y, Seong J, Choi M et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform[J]. Light, Science & Applications, 12, 152(2023).

    [52] Guo R, Decker M, Staude I et al. Bidirectional waveguide coupling with plasmonic Fano nanoantennas[J]. Applied Physics Letters, 105, 053114(2014).

    [53] Guo R, Decker M, Setzpfandt F et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas[J]. Science Advances, 3, e1700007(2017).

    [54] Meng Y, Liu Z T, Xie Z W et al. Versatile on-chip light coupling and (de) multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface[J]. Photonics Research, 8, 564-576(2020).

    [55] He T T, Meng Y, Liu Z T et al. Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge[J]. Optics Express, 29, 39406-39418(2021).

    [56] Wang Z, Li T T, Soman A et al. On-chip wavefront shaping with dielectric metasurface[J]. Nature Communications, 10, 3547(2019).

    [57] Wang H W, Zhang Y, He Y et al. Compact silicon waveguide mode converter employing dielectric metasurface structure[J]. Advanced Optical Materials, 7, 1801191(2019).

    [58] Xiang J L, Tao Z Y, Li X F et al. Metamaterial-enabled arbitrary on-chip spatial mode manipulation[J]. Light, Science & Applications, 11, 168(2022).

    [59] Hao W M, Wang J, Chen L. Plasmonic metasurfaces enabled ultra-compact broadband waveguide TM-pass polarizer[J]. Annalen Der Physik, 533, 2000422(2021).

    [60] Wang C, Li Z Y, Kim M H et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides[J]. Nature Communications, 8, 2098(2017).

    [61] Zhang Y, Shen J, Li J C et al. High-speed electro-optic modulation in topological interface states of a one-dimensional lattice[J]. Light, Science & Applications, 12, 206(2023).

    [62] Yang R, Wan S, Shi Y Y et al. Immersive tuning the guided waves for multifunctional on-chip metaoptics[J]. Laser & Photonics Reviews, 16, 2200127(2022).

    [63] Ha Y L, Guo Y H, Pu M B et al. Monolithic-integrated multiplexed devices based on metasurface-driven guided waves[J]. Advanced Theory and Simulations, 4, 2000239(2021).

    [64] Zhou N, Zheng S, Cao X P et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6×3.6 μm2 footprint[J]. Science Advances, 5, eaau9593(2019).

    [65] Yulaev A, Zhu W Q, Zhang C et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control[J]. ACS Photonics, 6, 2902-2909(2019).

    [66] Guo X X, Ding Y M, Chen X et al. Molding free-space light with guided wave-driven metasurfaces[J]. Science Advances, 6, eabb4142(2020).

    [67] Cai L, Pan J Y, Hu S. Overview of the coupling methods used in whispering gallery mode resonator systems for sensing[J]. Optics and Lasers in Engineering, 127, 105968(2020).

    [68] Falek E, Katiyi A, Greenberg Y et al. On-chip metasurface-on-facets for ultra-high transmission through waveguides in near-infrared[J]. Advanced Optical Materials, 9, 2100130(2021).

    [69] Siampour H, Kumar S, Davydov V A et al. On-chip excitation of single germanium vacancies in nanodiamonds embedded in plasmonic waveguides[J]. Light: Science & Applications, 7, 61(2018).

    [70] Dolores-Calzadilla V, Romeira B, Pagliano F et al. Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon[J]. Nature Communications, 8, 14323(2017).

    [71] Meng Y, Hu F T, Shen Y J et al. Ultracompact graphene-assisted tunable waveguide couplers with high directivity and mode selectivity[J]. Scientific Reports, 8, 13362(2018).

    [72] Vercruysse D, Neutens P, Lagae L et al. Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide[J]. ACS Photonics, 4, 1398-1402(2017).

    [73] Bernal Arango F, Kwadrin A, Koenderink A F. Plasmonic antennas hybridized with dielectric waveguides[J]. ACS Nano, 6, 10156-10167(2012).

    [74] Pors A, Nielsen M G, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 3, e197(2014).

    [75] Pors A, Bozhevolnyi S I. Waveguide metacouplers for in-plane polarimetry[J]. Physical Review Applied, 5, 064015(2016).

    [76] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [77] Doeleman H M, Verhagen E, Koenderink A F. Antenna-cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth[J]. ACS Photonics, 3, 1943-1951(2016).

    [78] Ameling R, Giessen H. Microcavity plasmonics: strong coupling of photonic cavities and plasmons[J]. Laser & Photonics Reviews, 7, 141-169(2013).

    [79] Cognée K G, Doeleman H M, Lalanne P et al. Cooperative interactions between nano-antennas in a high-Q cavity for unidirectional light sources[J]. Light, Science & Applications, 8, 115(2019).

    [80] Novotny L, van Hulst N. Antennas for light[J]. Nature Photonics, 5, 83-90(2011).

    [81] Staude I, Schilling J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 11, 274-284(2017).

    [82] Guo Y H, Pu M B, Li X et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 4700107(2018).

    [83] Zhang Y B, Li Z C, Liu W W et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces[J]. Advanced Optical Materials, 7, 1801273(2019).

    [84] Coles R J, Price D M, Dixon J E et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer[J]. Nature Communications, 7, 11183(2016).

    [85] Zhang Y B, Li Z C, Liu W W et al. Multi-band on-chip photonic spin Hall effect and selective excitation of whispering gallery modes with metasurface-integrated microcavity[J]. Optics Letters, 46, 3528-3531(2021).

    [86] Mueller J P B, Rubin N A, Devlin R C et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [87] Meng Y, Hu F T, Liu Z T et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization[J]. Optics Express, 27, 16425-16439(2019).

    [88] Rubin N A, Zaidi A, Dorrah A H et al. Jones matrix holography with metasurfaces[J]. Science Advances, 7, eabg7488(2021).

    [89] Ding Y H, Xu J, Da Ros F et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Optics Express, 21, 10376-10382(2013).

    [90] Ohana D, Desiatov B, Mazurski N et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 16, 7956-7961(2016).

    [91] Liao K, Gan T Y, Hu X Y et al. On-chip nanophotonic devices based on dielectric metasurfaces[J]. Acta Optica Sinica, 41, 0823001(2021).

    [92] Fan Y L, Le Roux X, Korovin A et al. Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain[J]. ACS Nano, 11, 4599-4605(2017).

    [93] Yao C H, Wang Z, Wang H W et al. On-chip multi-mode manipulation via 2D refractive-index perturbation on a waveguide[J]. Advanced Optical Materials, 8, 2000996(2020).

    [94] Yao C N, Wang Y L, Zhang J H et al. Dielectric nanoaperture metasurfaces in silicon waveguides for efficient and broadband mode conversion with an ultrasmall footprint[J]. Advanced Optical Materials, 8, 2000529(2020).

    [95] Guo J S, Ye C C, Liu C Y et al. Ultra-compact and ultra-broadband guided-mode exchangers on silicon[J]. Laser & Photonics Reviews, 14, 2000058(2020).

    [96] Zhang Y, He Y, Wang H W et al. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens[J]. ACS Photonics, 8, 202-208(2021).

    [97] Li Z Y, Kim M H, Wang C et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 12, 675-683(2017).

    [98] Wang R D, Wu Q, Cai W et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface[J]. ACS Photonics, 6, 1774-1779(2019).

    [99] Fan Y L, Cluzel B, Petit M et al. 2D waveguided Bessel beam generated using integrated metasurface-based plasmonic axicon[J]. ACS Applied Materials & Interfaces, 12, 21114-21119(2020).

    [100] Deng L, Xu Y H, Jin R C et al. On-demand mode conversion and wavefront shaping via on-chip metasurfaces[J]. Advanced Optical Materials, 10, 2200910(2022).

    [101] Wang Z J, Yao K, Chen M et al. Manipulating smith-purcell emission with babinet metasurfaces[J]. Physical Review Letters, 117, 157401(2016).

    [102] Li L, Yao K, Wang Z J et al. Harnessing evanescent waves by bianisotropic metasurfaces[J]. Laser & Photonics Reviews, 14, 1900244(2020).

    [103] Nikogosyan D N[M]. Nonlinear optical crystals: a complete survey(2006).

    [104] Boes A, Corcoran B, Chang L et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018).

    [105] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [106] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond[J]. Nature Photonics, 13, 359-364(2019).

    [107] Li M X, Ling J W, He Y et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).

    [108] Chang L, Li Y F, Volet N et al. Thin film wavelength converters for photonic integrated circuits[J]. Optica, 3, 531-535(2016).

    [109] Wang C, Langrock C, Marandi A et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 5, 1438-1441(2018).

    [110] Fang B, Li H M, Zhu S N et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 8, 1296-1300(2020).

    [111] Krasnokutska I, Chapman R J, Tambasco J L J et al. High coupling efficiency grating couplers on lithium niobate on insulator[J]. Optics Express, 27, 17681-17685(2019).

    [112] He L Y, Zhang M, Shams-Ansari A et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 44, 2314-2317(2019).

    [113] Ding Y M, Chen X, Duan Y et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation[J]. ACS Photonics, 9, 398-404(2022).

    [114] Tachella J, Altmann Y, Mellado N et al. Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers[J]. Nature Communications, 10, 4984(2019).

    [115] Reutebuch S E, Andersen H E, McGaughey R J. Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory[J]. Journal of Forestry, 103, 286-292(2005).

    [116] Levola T. Diffractive optics for virtual reality displays[J]. Journal of the Society for Information Display, 14, 467-475(2006).

    [117] Liu Z Y, Wang D Y, Gao H et al. Metasurface-enabled augmented reality display: a review[J]. Advanced Photonics, 5, 034001(2023).

    [118] Fang B, Wang Z Z, Gao S L et al. Manipulating guided wave radiation with integrated geometric metasurface[J]. Nanophotonics, 11, 1923-1930(2022).

    [119] Hsieh P Y, Fang S L, Lin Y S et al. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection[J]. Nanophotonics, 11, 4687-4695(2022).

    [120] Yang R, Yu Q Q, Pan Y W et al. Directional-multiplexing holography by on-chip metasurface[J]. Opto-Electronic Engineering, 49, 220177(2022).

    [121] Cognée K G, Doeleman H M, Lalanne P et al. Generation of pure OAM beams with a single state of polarization by antenna-decorated microdisk resonators[J]. ACS Photonics, 7, 3049-3060(2020).

    [122] Zhang Y B, Li Z C, Liu W W et al. On-chip multidimensional manipulation of far-field radiation with guided wave-driven metasurfaces[J]. Laser & Photonics Reviews, 17, 2300109(2023).

    [123] Huang H Q, Overvig A C, Xu Y et al. Leaky-wave metasurfaces for integrated photonics[J]. Nature Nanotechnology, 18, 580-588(2023).

    [124] Xu G Y, Overvig A, Kasahara Y et al. Arbitrary aperture synthesis with nonlocal leaky-wave metasurface antennas[J]. Nature Communications, 14, 4380(2023).

    [125] Ji J T, Wang Z Z, Sun J C et al. Metasurface-enabled on-chip manipulation of higher-order poincaré sphere beams[J]. Nano Letters, 23, 2750-2757(2023).

    [126] Shi Y Y, Wan C W, Dai C J et al. Augmented reality enabled by on-chip meta-holography multiplexing[J]. Laser & Photonics Reviews, 16, 2100638(2022).

    [127] Shi Y Y, Wan C W, Dai C J et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection[J]. Optica, 9, 670-676(2022).

    [128] Fang B, Shu F Z, Wang Z Z et al. On-chip non-uniform geometric metasurface for multi-channel wavefront manipulations[J]. Optics Letters, 48, 3119-3122(2023).

    [129] Wu C M, Yu H S, Lee S et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network[J]. Nature Communications, 12, 96(2021).

    [130] Chen B G, Bruck R, Traviss D et al. Hybrid photon-plasmon coupling and ultrafast control of nanoantennas on a silicon photonic chip[J]. Nano Letters, 18, 610-617(2018).

    [131] Kang M, Liu T, Chan C T et al. Applications of bound states in the continuum in photonics[J]. Nature Reviews Physics, 5, 659-678(2023).

    [132] Zou C L, Cui J M, Sun F W et al. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators[J]. Laser & Photonics Reviews, 9, 114-119(2015).

    [133] Zeng Y X, Hu G W, Liu K P et al. Dynamics of topological polarization singularity in momentum space[J]. Physical Review Letters, 127, 176101(2021).

    [134] Chang L, Jiang X S, Hua S Y et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J]. Nature Photonics, 8, 524-529(2014).

    [135] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 11, 752-762(2017).

    [136] Özdemir Ş K, Rotter S, Nori F et al. Parity-time symmetry and exceptional points in photonics[J]. Nature Materials, 18, 783-798(2019).

    [137] Miri M A, Alù A. Exceptional points in optics and photonics[J]. Science, 363, eaar7709(2019).

    [138] Yin X F, Inoue T, Peng C et al. Topological unidirectional guided resonances emerged from interband coupling[J]. Physical Review Letters, 130, 056401(2023).

    [139] Li Q T, van de Groep J, White A K et al. Metasurface optofluidics for dynamic control of light fields[J]. Nature Nanotechnology, 17, 1097-1103(2022).

    [140] Kühner L, Sortino L, Berté R et al. Radial bound states in the continuum for polarization-invariant nanophotonics[J]. Nature Communications, 13, 4992(2022).

    [141] Li Z, Zhang X Y, Ma R D et al. Versatile optical manipulation of trions, dark excitons and biexcitons through contrasting exciton-photon coupling[J]. Light, Science & Applications, 12, 295(2023).

    [142] Vazimali M G, Fathpour S. Applications of thin-film lithium niobate in nonlinear integrated photonics[J]. Advanced Photonics, 4, 034001(2022).

    [143] Yang L C, Li G R, Gao X M et al. Topological-cavity surface-emitting laser[J]. Nature Photonics, 16, 279-283(2022).

    [144] Lin J T, Farajollahi S, Fang Z W et al. Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser[J]. Advanced Photonics, 4, 036001(2022).

    [145] El-Ganainy R, Makris K G, Khajavikhan M et al. Non-Hermitian physics and PT symmetry[J]. Nature Physics, 14, 11-19(2018).

    [146] Yu S W, Li Z C, Liu W W et al. Tunable dual-band and high-quality-factor perfect absorption based on VO2-assisted metasurfaces[J]. Optics Express, 29, 31488-31498(2021).

    [147] Wang Q, Rogers E T F, Gholipour B et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 10, 60-65(2016).

    [148] Ma W, Liu Z C, Kudyshev Z A et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 15, 77-90(2021).

    [149] Ma W, Hou M J, Luo R Q et al. Topologically-optimized on-chip metamaterials for ultra-short-range light focusing and mode-size conversion[J]. Nanophotonics, 12, 1189-1197(2023).

    [150] Piggott A Y, Lu J, Lagoudakis K G et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 9, 374-377(2015).

    [151] Jia H, Zhou T, Fu X et al. Inverse-design and demonstration of ultracompact silicon meta-structure mode exchange device[J]. ACS Photonics, 5, 1833-1838(2018).

    [152] Molesky S, Lin Z, Piggott A Y et al. Inverse design in nanophotonics[J]. Nature Photonics, 12, 659-670(2018).

    [153] Wang K Y, Ren X S, Chang W J et al. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Research, 8, 528-533(2020).

    [154] Ma D N, Cheng H, Tian J G et al. Inverse design methods and applications of photonics devices (invited)[J]. Acta Photonica Sinica, 51, 0151110(2022).

    [155] Liu Y, Shi Y Y, Wang Z J et al. On-chip integrated metasystem with inverse-design wavelength demultiplexing for augmented reality[J]. ACS Photonics, 10, 1268-1274(2023).

    [156] Zhou H Y, Liao K, Su Z X et al. Tunable on-chip mode converter enabled by inverse design[J]. Nanophotonics, 12, 1105-1114(2023).

    Tools

    Get Citation

    Copy Citation Text

    Yanchun Wang, Yuebian Zhang, Hua Cheng, Shuqi Chen. Light Field Manipulation Based on On-Chip Integrated Artificial Microstructures (Invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Physical Optics

    Received: Jan. 2, 2024

    Accepted: Jan. 29, 2024

    Published Online: Apr. 23, 2024

    The Author Email: Yuebian Zhang (ybzhang@nankai.edu.cn), Hua Cheng (hcheng@nankai.edu.cn), Shuqi Chen (schen@nankai.edu.cn)

    DOI:10.3788/AOS240429

    CSTR:32393.14.AOS240429

    Topics