High Power Laser and Particle Beams, Volume. 33, Issue 12, 123013(2021)
Statistical characteristics of S-band microwave pulse breakdown time in free space
[1] [1] Barker R, Edi S. High power microwave source technology[M]. Beijing: Tsinghua University Press, 2005: 154158.
[3] Sprangle P, Hafizi B, Milchberg H, et al. Active remote detection of radioactivity based on electromagnetic signatures[J]. Physics of Plasmas, 21, 013103(2014).
[4] Isaacs J, Miao Chenlong, Sprangle P. Remote monostatic detection of radioactive material by laser-induced breakdown[J]. Physics of Plasmas, 23, 033507(2016).
[5] Nusinovich G S, Pu Ruifeng, Antonsen Jr T M, et al. Development of THz-range gyrotrons for detection of concealed radioactive materials[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 380-402(2011).
[6] Nusinovich G S, Sprangle P, Semenov V E, et al. On the sensitivity of terahertz gyrotron based systems for remote detection of concealed radioactive materials[J]. Journal of Applied Physics, 111, 124912(2012).
[7] Dorozhkina D, Semenov V, Olsson T, et al. Investigations of time delays in microwave breakdown initiation[J]. Physics of Plasmas, 13, 013506(2006).
[8] Foster J, Krompholz H, Neuber A. Investigation of the delay time distribution of high power microwave surface flashover[J]. Physics of Plasmas, 18, 013502(2011).
[9] Kim D, Yu D, Sawant A, et al. Remote detection of radioactive material using high-power pulsed electromagnetic radiation[J]. Nature Communications, 8, 15394(2017).
[11] Cook A M, Hummelt J S, Shapiro M A, et al. Measurements of electron avalanche formation time in W-band microwave air breakdown[J]. Physics of Plasmas, 18, 080707(2011).
[12] Edmiston G, Krile J, Neuber A, et al. High-power microwave surface flashover of a gas–dielectric interface at 90–760 torr[J]. IEEE Transactions on Plasma Science, 34, 1782-1788(2006).
[16] Hidaka Y, Choi E M, Mastovsky I, et al. Imaging of atmospheric air breakdown caused by a high-power 110-GHz pulsed Gaussian beam[J]. IEEE Transactions on Plasma Science, 36, 936-937(2008).
[17] Zhou Qianhong, Dong Zhiwei. Modeling study on pressure dependence of plasma structure and formation in 110 GHz microwave air breakdown[J]. Applied Physics Letters, 98, 161504(2011).
[18] Cook A, Shapiro M, Temkin R. Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz[J]. Applied Physics Letters, 97, 011504(2010).
[19] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 14, 722-733(2005).
[20] Phelps A V, Pitchford L C. Anisotropic scattering of electrons by N2 and its effect on electron transport[J]. Physical Review A, 31, 2932-2949(1985).
[21] [21] SIGLO database[EBOL]. [20130604]. http:www.lxcat.laplace.univtlse.fr.
[22] Lawton S A, Phelps A V. Excitation of the
[23] [23] PHELPS database[EBOL]. http:www.lxcat.laplace.univtlse.fr, retrieved June 4, 2013NOTE: 3 body attachment cross section are nmalized to gas density in units of cm.
Get Citation
Copy Citation Text
Hao Yang, Eryan Yan, Yong Nie, Chuan Yu, Xiangyang Bao, Qianglin Zheng, Haiying Hu. Statistical characteristics of S-band microwave pulse breakdown time in free space[J]. High Power Laser and Particle Beams, 2021, 33(12): 123013
Category:
Received: Aug. 25, 2021
Accepted: --
Published Online: Dec. 21, 2021
The Author Email: Chuan Yu (yuchuan@263.com)