Chinese Optics, Volume. 16, Issue 5, 1066(2023)

Infrared small target detection via L1−2 spatial-temporal total variation regularization

De-min ZHAO1,2, Yang SUN3、*, Zai-ping LIN3, and Wei XIONG1
Author Affiliations
  • 1Aerospace Engineering University, Beijing 150001, China
  • 2DFH Satellite Corporation, Beijing 100080, China
  • 3College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    Figures & Tables(10)
    The detection results of the proposed algorithm in different scenes
    The ROC curves of different image sequences at different parameter 不同步长L下6组测试序列的ROC曲线
    The detection results of the representative frames in Sequence 1-6 by the six tested methods
    The 3D detection results of the representative frames in Sequence 6
    ROC curves of the detection results of Sequences 1-6
    • Table 1. The solution of \begin{document}$ {L_{1 - 2}} $\end{document} STTV model

      View table
      View in Article

      Table 1. The solution of \begin{document}$ {L_{1 - 2}} $\end{document} STTV model

      输入:红外图像序列 ${f_1},{f_2}, \cdots ,{f_P} \in { {\mathcal{R} }^{m \times n} }$,帧数步长 $L$,正则化参数 ${\lambda _1},{\lambda _2},\alpha .$输出:背景张量 ${ { {\mathcal{B} } }^k}$,目标张量 ${ { {\mathcal{T} } }^k}$,噪声张量 ${ {\mathcal{N} }^k}.$初始化:输入图像序列转化为原始张量 ${ {\mathcal{F} } },$$\rho = 1.1,$${ {\mathcal{B} }^0} = { {\boldsymbol{ {\mathcal{T} } } }^0} = { {\mathcal{N} }^0} = 0,{\mathcal{Y} }_1^0 = {\mathcal{Y} }_2^0 = 0,$${ {\mathcal{W} }^0} = {\mathcal{I} }$,Schattern $p$范数指数 $p = 0.8,$${\mu _0} = 1\times10^{-2},{\mu _{\max } } = 1\times10^7,k = 0.$
      迭代循环: 收敛误差条件不满足时,执行 1. 根据式(12)更新背景张量 ${ {\mathcal{B} }^{k + 1} }$; 2. 根据式(22)、(23)、(24)更新 ${ {\mathcal{Z} }^{k + 1} }$; 3. 根据式(27)更新目标张量 ${ {\mathcal{T} }^{k + 1} }$; 4. 根据式(29)更新噪声张量 ${ {\mathcal{N} }^{k + 1} }$; 5. 根据式(30)、(31)更新拉格朗日乘子和 $ {\mu ^{k + 1}} $; 6. 根据式(32)更新背景权重张量 ${ {\mathcal{W} }^{k + 1} }$; 7. 判断下列收敛条件是否满足: ${ {\left\| { {\mathcal{F} } - {\mathcal{B} } - {\mathcal{T} } - {\mathcal{N} } } \right\|_F^2} \mathord{\left/ {\vphantom { {\left\| { {\mathcal{F} } - {\mathcal{B} } - {\mathcal{T} } - {\mathcal{N} } } \right\|_F^2} {\left\| {\mathcal{F} } \right\|_F^2} } } \right. } {\left\| {\mathcal{F} } \right\|_F^2} } \leqslant \varepsilon$满足则跳出循环,输出结果,否则执行步骤8; 8. 迭代次数 $k = k + 1$,返回步骤1;
    • Table 2. The characteristic of the experimental data

      View table
      View in Article

      Table 2. The characteristic of the experimental data

      序号帧数尺寸背景特性目标SCR
      1120250×200天空场景,卷云层和噪声干扰2.24
      2120200×150天空场景,云层和噪声干扰4.35
      3120128×128地面场景,高亮背景干扰2.13
      4120200×158天空场景,高亮云层干扰0.94
      5120256×256地面场景,高亮杂波干扰1.76
      6120256×256地面场景,高亮杂波干扰1.01
    • Table 3. Quantitative evaluation results of the tested methods for the representative images of sequences 1-3

      View table
      View in Article

      Table 3. Quantitative evaluation results of the tested methods for the representative images of sequences 1-3

      算法序列1的第24帧序列2的第92帧序列3的第60帧
      LSNRGBSFSCRGCGLSNRGBSFSCRGCGLSNRGBSFSCRGCG
      Maxmedian0.530.731.972.721.882.526.582.610.820.713.194.48
      Tophat0.910.631.602.531.351.071.801.681.051.321.461.11
      LIRDNet1.042.4316.894.931.298.2731.853.850.941.704.682.75
      DNANet0.991.416.884.882.3712.3039.253.190.982.134.522.12
      WSNMSTIPT1.061.7213.357.75InfInfInf7.811.091.505.493.66
      本文算法1.122.9822.827.67InfInfInf8.871.102.5114.435.75
    • Table 4. Quantitative evaluation results of the tested methods for the representative images of sequences 4-6

      View table
      View in Article

      Table 4. Quantitative evaluation results of the tested methods for the representative images of sequences 4-6

      算法序列4的第76帧序列5的第72帧序列6的第117帧
      LSNRGBSFSCRGCGLSNRGBSFSCRGCGLSNRGBSFSCRGCG
      Maxmedian2.352.0512.946.301.391.2911.588.950.882.6212.594.80
      Tophat2.291.525.693.751.270.944.975.301.021.113.072.77
      LIRDNetNaNInfNaN0.00InfInfInf20.06NaNInfNaN0.00
      DNANetNaNInfNaN0.00NaNInfNaN0.00NaNInfNaN0.00
      WSNMSTIPTInfInfInf7.272.505.0273.5314.651.9314.64100.256.85
      本文算法InfInfInf15.85InfInfInf23.16InfInfInf12.33
    • Table 5. Runtime comparison of different algorithms (s)

      View table
      View in Article

      Table 5. Runtime comparison of different algorithms (s)

      算法序列1序列2序列3序列4序列5序列6
      Tophat1.931.651.152.202.162.70
      Maxmedian174.39110.1858.47114.21205.67209.48
      LIRDNet19.9239.1316.6438.4576.3683.62
      DNANet31.2665.4133.4258.24130.19126.58
      WSNMSTIPT79.8780.4166.2074.34527.15459.19
      本文算法20.8147.6924.8351.82109.69114.93
    Tools

    Get Citation

    Copy Citation Text

    De-min ZHAO, Yang SUN, Zai-ping LIN, Wei XIONG. Infrared small target detection via L1−2 spatial-temporal total variation regularization[J]. Chinese Optics, 2023, 16(5): 1066

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Original Article

    Received: Nov. 8, 2022

    Accepted: --

    Published Online: Oct. 27, 2023

    The Author Email:

    DOI:10.37188/CO.2022-0229

    Topics