Journal of Synthetic Crystals, Volume. 50, Issue 11, 2173(2021)

Research Progress of WO3 Crystal Facet Tuning by Organic Structure Inducers

CUI Jiameizi*, ZHENG Jinyou, ZHANG Kaidi, ZHAI Zihao, MA Wei, ZHANG Lili, and YU Xiaomei
Author Affiliations
  • [in Chinese]
  • show less
    References(32)

    [1] [1] WANG J, XU F, JIN H Y, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838.

    [2] [2] ZHENG J Y, HAIDER Z, VAN T K, et al. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications[J]. Cryst Eng Comm, 2015, 17(32): 6070-6093.

    [3] [3] WANG J C, ZHANG Y, ZHOU T S, et al. Efficient WO3-x nanoplates photoanode based on bidentate hydrogen bonds and thermal reduction of ethylene glycol[J]. Chemical Engineering Journal, 2021, 404: 127089.

    [4] [4] GOMIS-BERENGUER A, INIESTA J, FERMN D, et al. Photoelectrochemical response of WO3/nanoporous carbon anodes for photocatalytic water oxidation[J]. C-Journal of Carbon Research, 2018, 4(3): 45.

    [5] [5] BAI S L, ZHANG K W, SHU X, et al. Carboxyl-directed hydrothermal synthesis of WO3nanostructures and their morphology-dependent gas-sensing properties[J]. Cryst Eng Comm, 2014, 16(44): 10210-10217.

    [6] [6] LI D, CHANDRA D, TAKEUCHI R, et al. Dual-functional surfactant-templated strategy for synthesis of an in situ N2-intercalated mesoporous WO3 photoanode for efficient visible-light-driven water oxidation[J]. Chemistry-A European Journal, 2017, 23(27): 6596-6604.

    [7] [7] OHNO T, SARUKAWA K, MATSUMURA M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions[J]. New Journal of Chemistry, 2002, 26(9): 1167-1170.

    [8] [8] WANG Y D, TIAN W, CHEN C, et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation[J]. Advanced Functional Materials, 2019, 29(23): 1809036.

    [9] [9] ZHENG J Y, SONG G, KIM C W, et al. Fabrication of (001)-oriented monoclinic WO3 films on FTO substrates[J]. Nanoscale, 2013, 5(12): 5279.

    [10] [10] WANG S, LIU G, WANG L. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Reviews, 2019, 119(8): 5192-5247.

    [11] [11] ZHENG J Y, PAWAR A U, KIM C W, et al. Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization[J]. Applied Catalysis B: Environmental, 2018, 233: 88-98.

    [12] [12] GUO Y, QUAN X, LU N, et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes[J]. Environmental Science & Technology, 2007, 41(12): 4422-4427.

    [13] [13] TSAI Y H, CHIU C Y, HUANG M H. Fabrication of diverse Cu2O nanoframes through face-selective etching[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24611-24617.

    [14] [14] VENKATESAN H, AROULMOJI V, SEKAR C, et al. Synthesis of tungsten oxide (WO3) nanoparticles with EDTA by microwave irradiation method[J]. International Journal of Advanced Science and Engineering, 2016, 3(299): 299-307.

    [15] [15] ZHENG G W, WANG J S, ZU G N, et al. Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting[J]. Journal of Materials Chemistry A, 2019, 7(45): 26077-26088.

    [16] [16] KONG L N, GUO X, XU J P, et al. Morphology control of WO3 nanoplate film on W foil by oxalic acid for photocatalytic gaseous acetaldehyde degradation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112760.

    [17] [17] KAPER H, DJERDJ I, GROSS S, et al. Ionic liquid- and surfactant-controlled crystallization of WO3 films[J]. Physical Chemistry Chemical Physics, 2015, 17(27): 18138-18145.

    [18] [18] ZHANG J J, ZHANG P, WANG T, et al. Monoclinic WO3 nanomultilayers with preferentially exposed (002) facets for photoelectrochemical water splitting[J]. Nano Energy, 2015, 11: 189-195.

    [19] [19] YANG J Q, GUO C, ZHANG J, et al. Organic acid assisted one-pot synthesis of highly oriented h-WO3 as an anode material for lithium-ion batteries[J]. Sustainable Energy & Fuels, 2018, 2(11): 2526-2531.

    [20] [20] HARIHARAN V, RADHAKRISHNAN S, PARTHIBAVARMAN M, et al. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications[J]. Talanta, 2011, 85(4): 2166-2174.

    [21] [21] LI Y J, LIU Z F, LIANG X P, et al. Synthesis and electrochromic properties of PEG doped WO3 film[J]. Materials Technology, 2014, 29(6): 341-349.

    [22] [22] GO G H, SHINDE P S, DOH C H, et al. PVP-assisted synthesis of nanostructured transparent WO3 thin films for photoelectrochemical water splitting[J]. Materials & Design, 2016, 90: 1005-1009.

    [23] [23] ELSAYED E M, ELNOUBY M S, GOUDA M H, et al. Effect of the morphology of tungsten oxide embedded in sodium alginate/polyvinylpyrrolidone composite beads on the photocatalytic degradation of methylene blue dye solution[J]. Materials, 2020, 13(8): 1905.

    [24] [24] WEI H G, YAN X R, LI Y F, et al. Electrochromic poly(DNTD)/WO3 nanocomposite films via electorpolymerization[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16286-16293.

    [25] [25] KALANUR S S, DUY L T, SEO H. Recent progress in photoelectrochemical water splitting activity of WO3 photoanodes[J]. Topics in Catalysis, 2018, 61(9/10/11): 1043-1076.

    [28] [28] YANG Y H, ZHAN F Q, LI H, et al. In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid[J]. Journal of Solid State Electrochemistry, 2017, 21(8): 2231-2240.

    [30] [30] YI H, HUANG D L, QIN L, et al. Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production[J]. Applied Catalysis B: Environmental, 2018, 239: 408-424.

    [31] [31] YAN M, WU Y L, ZHU F F, et al. The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 3308-3315.

    [33] [33] KIM T H, HASANI A, QUYET L V, et al. NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process[J]. Sensors and Actuators B: Chemical, 2019, 286: 512-520.

    [34] [34] XU W, QIU C J, ZHOU J, et al. Regulation of specific surface area of 3D flower-like WO3 hierarchical structures for gas sensing application[J]. Ceramics International, 2020, 46(8): 11372-11378.

    [35] [35] ZHANG G G, NI H Z, ZHANG X C, et al. Electrochromic properties of WO3 film by spin-coating[J]. Chinese Journal of Luminescence, 2019, 40(2): 183-188.

    [36] [36] ZHAN Y H, YANG Z W, XU Z, et al. Electrochromism induced reversible upconversion luminescence modulation of WO3∶Yb3+, Er3+ inverse opals for optical storage application[J]. Chemical Engineering Journal, 2020, 394: 124967.

    Tools

    Get Citation

    Copy Citation Text

    CUI Jiameizi, ZHENG Jinyou, ZHANG Kaidi, ZHAI Zihao, MA Wei, ZHANG Lili, YU Xiaomei. Research Progress of WO3 Crystal Facet Tuning by Organic Structure Inducers[J]. Journal of Synthetic Crystals, 2021, 50(11): 2173

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jul. 5, 2021

    Accepted: --

    Published Online: Feb. 14, 2022

    The Author Email: Jiameizi CUI (cjmeizi98@163.com)

    DOI:

    CSTR:32186.14.

    Topics