Laser & Optoelectronics Progress, Volume. 61, Issue 15, 1500001(2024)
China's Top 10 Optical Breakthroughs: Antichiral Topological Photonic States (Invited)
[1] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).
[2] Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure: the face-centered-cubic case employing nonspherical atoms[J]. Physical Review Letters, 67, 2295-2298(1991).
[3] Yablonovitch E, Gmitter T J, Meade R D et al. Donor and acceptor modes in photonic band structure[J]. Physical Review Letters, 67, 3380-3383(1991).
[4] Ho K M, Chan C T, Soukoulis C M. Existence of a photonic gap in periodic dielectric structures[J]. Physical Review Letters, 65, 3152-3155(1990).
[5] Lu L, Joannopoulos J D, Soljačić M. Topological photonics[J]. Nature Photonics, 8, 821-829(2014).
[6] Xie B Y, Wang H F, Zhu X Y et al. Photonics meets topology[J]. Optics Express, 26, 24531-24550(2018).
[7] Kim M, Jacob Z, Rho J. Recent advances in 2D, 3D and higher-order topological photonics[J]. Light: Science & Applications, 9, 130(2020).
[8] Liu J W, Shi F L, He X T et al. Valley photonic crystals[J]. Advances in Physics: X, 6, 1905546(2021).
[9] Wang J F, Sui X L, Duan W H et al. Density-independent plasmons for terahertz-stable topological metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2023029118(2021).
[10] Wang X Y, Zhao W, Zhang H Y et al. Magnetic-optic effect-based topological state: realization and application[J]. Frontiers in Materials, 8, 816877(2022).
[11] Xie B Y, Liu H, Wang H N et al. A review of topological semimetal phases in photonic artificial microstructures[J]. Frontiers in Physics, 9, 771481(2021).
[12] Tang G J, He X T, Shi F L et al. Topological photonic crystals: physics, designs, and applications[J]. Laser & Photonics Reviews, 16, 2100300(2022).
[13] Chen J F, Li Z Y. Topological photonic states in gyromagnetic photonic crystals: physics, properties, and applications[J]. Chinese Physics B, 31, 114207(2022).
[14] Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 100, 013904(2008).
[15] Raghu S, Haldane F D M. Analogs of quantum-Hall-effect edge states in photonic crystals[J]. Physical Review A, 78, 033834(2008).
[16] Hatsugai Y. Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 71, 3697-3700(1993).
[17] Hatsugai Y. Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function[J]. Physical Review B, 48, 11851-11862(1993).
[18] Qi X L, Wu Y S, Zhang S C. General theorem relating the bulk topological number to edge states in two-dimensional insulators[J]. Physical Review B, 74, 045125(2006).
[19] Wang Z, Chong Y D, Joannopoulos J D et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 100, 013905(2008).
[20] Wang Z, Chong Y D, Joannopoulos J D et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 461, 772-775(2009).
[21] Fu J X, Liu R J, Li Z Y. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces[J]. Applied Physics Letters, 97, 041112(2010).
[22] Fu J X, Liu R J, Gan L et al. Control and blockage of edge modes in magneto-optical photonic crystals[J]. EPL (Europhysics Letters), 93, 24001(2011).
[23] Ao X Y, Lin Z F, Chan C T. One-way edge mode in a magneto-optical honeycomb photonic crystal[J]. Physical Review B, 80, 033105(2009).
[24] Poo Y, Wu R X, Lin Z F et al. Experimental realization of self-guiding unidirectional electromagnetic edge states[J]. Physical Review Letters, 106, 093903(2011).
[25] Ozawa T, Price H M, Amo A et al. Topological photonics[J]. Reviews of Modern Physics, 91, 015006(2019).
[26] Price H, Chong Y D, Khanikaev A et al. Roadmap on topological photonics[J]. Journal of Physics: Photonics, 4, 032501(2022).
[27] Ma G C, Xiao M, Chan C T. Topological phases in acoustic and mechanical systems[J]. Nature Reviews Physics, 1, 281-294(2019).
[28] Xue H R, Yang Y H, Zhang B L. Topological acoustics[J]. Nature Reviews Materials, 7, 974-990(2022).
[29] Hu H, Han S, Yang Y H et al. Observation of topological edge states in thermal diffusion[J]. Advanced Materials, 34, 2202257(2022).
[30] Rivas Á, Martin-Delgado M A. Topological heat transport and symmetry-protected boson currents[J]. Scientific Reports, 7, 6350(2017).
[31] Xu G Q, Li Y, Li W et al. Configurable phase transitions in a topological thermal material[J]. Physical Review Letters, 127, 105901(2021).
[32] Huber S D. Topological mechanics[J]. Nature Physics, 12, 621-623(2016).
[33] Zheng S J, Duan G J, Xia B Z. Progress in topological mechanics[J]. Applied Sciences, 12, 1987(2022).
[34] Albert V V, Glazman L I, Jiang L. Topological properties of linear circuit lattices[J]. Physical Review Letters, 114, 173902(2015).
[35] Zhao E H. Topological circuits of inductors and capacitors[J]. Annals of Physics, 399, 289-313(2018).
[36] Hofmann T, Helbig T, Lee C H et al. Chiral voltage propagation and calibration in a topolectrical Chern circuit[J]. Physical Review Letters, 122, 247702(2019).
[37] Liu S, Zhang S, Cui T J et al. Topological circuit: a playground for exotic topological physics[J]. Chinese Optics, 14, 736-753(2021).
[38] Liu K X, Shen L F, He S L. One-way edge mode in a gyromagnetic photonic crystal slab[J]. Optics Letters, 37, 4110-4112(2012).
[39] Yang Y, Poo Y, Wu R X et al. Experimental demonstration of one-way slow wave in waveguide involving gyromagnetic photonic crystals[J]. Applied Physics Letters, 102, 231113(2013).
[40] Khanikaev A B, Hossein Mousavi S, Tse W K et al. Photonic topological insulators[J]. Nature Materials, 12, 233-239(2013).
[41] Chen W J, Jiang S J, Chen X D et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide[J]. Nature Communications, 5, 5782(2014).
[42] Ma T, Khanikaev A B, Mousavi S H et al. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides[J]. Physical Review Letters, 114, 127401(2015).
[43] Wu L H, Hu X. Scheme for achieving a topological photonic crystal by using dielectric material[J]. Physical Review Letters, 114, 223901(2015).
[44] Ma T, Shvets G. All-Si valley-hall photonic topological insulator[J]. New Journal of Physics, 18, 025012(2016).
[45] Dong J W, Chen X D, Zhu H Y et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 16, 298-302(2017).
[46] Lu J C, Chen X D, Deng W M et al. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries[J]. Journal of Optics, 20, 075103(2018).
[47] Skirlo S A, Lu L, Soljačić M. Multimode one-way waveguides of large Chern numbers[J]. Physical Review Letters, 113, 113904(2014).
[48] Skirlo S A, Lu L, Igarashi Y et al. Experimental observation of large Chern numbers in photonic crystals[J]. Physical Review Letters, 115, 253901(2015).
[49] Xia S, Kaltsas D, Song D et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states[J]. Science, 372, 72-76(2021).
[50] Weidemann S, Kremer M, Helbig T et al. Topological funneling of light[J]. Science, 368, 311-314(2020).
[51] Dai T X, Ao Y T, Mao J et al. Non-Hermitian topological phase transitions controlled by nonlinearity[J]. Nature Physics, 1-8(2023).
[52] Wu E J, Li G Z, Yu D Y et al. Nonlinear topological photonic insulator in synthetic space[J]. Annalen Der Physik, 534, 2200288(2022).
[53] Kruk S. Nonlinear topological photonics[M]. Advances in nonlinear photonics, 85-111(2023).
[54] Guo Q H, Jiang T S, Zhang R Y et al. Experimental observation of non-Abelian topological charges and edge states[J]. Nature, 594, 195-200(2021).
[55] Jiang T S, Guo Q H, Zhang R Y et al. Four-band non-Abelian topological insulator and its experimental realization[J]. Nature Communications, 12, 6471(2021).
[56] Dai T X, Ao Y T, Bao J M et al. Topologically protected quantum entanglement emitters[J]. Nature Photonics, 16, 248-257(2022).
[57] Chen Y, He X T, Cheng Y J et al. Topologically protected valley-dependent quantum photonic circuits[J]. Physical Review Letters, 126, 230503(2021).
[58] Lu L, Joannopoulos J D, Soljačić M. Topological states in photonic systems[J]. Nature Physics, 12, 626-629(2016).
[59] Bahari B, Ndao A, Vallini F et al. Nonreciprocal lasing in topological cavities of arbitrary geometries[J]. Science, 358, 636-640(2017).
[60] Bandres M A, Wittek S, Harari G et al. Topological insulator laser: experiments[J]. Science, 359, 1231(2018).
[61] Zeng Y Q, Chattopadhyay U, Zhu B F et al. Electrically pumped topological laser with valley edge modes[J]. Nature, 578, 246-250(2020).
[62] Yang L C, Li G R, Gao X M et al. Topological-cavity surface-emitting laser[J]. Nature Photonics, 16, 279-283(2022).
[63] Pilozzi L, Leykam D, Chen Z G et al. Topological photonic crystal fibers and ring resonators[J]. Optics Letters, 45, 1415-1418(2020).
[64] Lu L, Gao H Z, Wang Z. Topological one-way fiber of second Chern number[J]. Nature Communications, 9, 5384(2018).
[65] Lin H, Lu L. Dirac-vortex topological photonic crystal fibre[J]. Light: Science & Applications, 9, 202(2020).
[66] Zhang Z S, Lu J Y, Liu T et al. Azimuthally and radially polarized orbital angular momentum modes in valley topological photonic crystal fiber[J]. Nanophotonics, 10, 4067-4074(2021).
[67] Lu C C, Yuan H Y, Zhang H Y et al. On-chip topological nanophotonic devices[J]. Chip, 1, 100025(2022).
[68] Tang G C, Huang Y H, Chen J F et al. Controllable one-way add-drop filter based on magneto-optical photonic crystal with ring resonator and microcavities[J]. Optics Express, 30, 28762-28773(2022).
[69] Chen J F, Qin Q M, Peng C Q et al. Slow light rainbow trapping in a uniformly magnetized gyromagnetic photonic crystal waveguide[J]. Frontiers in Materials, 8, 728991(2021).
[70] Qin Q M, Chen J F, Lin H et al. Topological resistance-free one-way transport in a square-hexagon lattice gyromagnetic photonic crystal[J]. Nanomaterials, 12, 3009(2022).
[71] Liu S Y, Lu W L, Lin Z F et al. Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials[J]. Applied Physics Letters, 97, 201113(2010).
[72] Liu S Y, Lu W L, Lin Z F et al. Molding reflection from metamaterials based on magnetic surface plasmons[J]. Physical Review B, 84, 045425(2011).
[73] Lian J, Fu J X, Gan L et al. Robust and disorder-immune magnetically tunable one-way waveguides in a gyromagnetic photonic crystal[J]. Physical Review B, 85, 125108(2012).
[74] Chen J F, Qin Q M, Peng C Q et al. Robust topological one-way edge states in radius-fluctuated photonic Chern topological insulators[J]. Optics Express, 30, 21621-21633(2022).
[75] Zhou P H, Liu G G, Ren X et al. Photonic amorphous topological insulator[J]. Light: Science & Applications, 9, 133(2020).
[76] Chen J F, Liang W Y, Li Z Y. Revealing photonic Lorentz force as the microscopic origin of topological photonic states[J]. Nanophotonics, 9, 3217-3226(2020).
[77] Lannebère S, Silveirinha M G. Photonic analogues of the Haldane and kane-mele models[J]. Nanophotonics, 8, 1387-1397(2019).
[78] Bahari B, Hsu L, Pan S H et al. Photonic quantum Hall effect and multiplexed light sources of large orbital angular momenta[J]. Nature Physics, 17, 700-703(2021).
[79] Peng C Q, Chen J F, Qin Q M et al. Topological one-way edge states in an air-hole honeycomb gyromagnetic photonic crystal[J]. Frontiers in Physics, 9, 825643(2022).
[80] Fang Y T, He H Q, Hu J X et al. Flat and self-trapping photonic bands through coupling of two unidirectional edge modes[J]. Physical Review A, 91, 033827(2015).
[81] Chen J F, Liang W Y, Li Z Y. Strong coupling of topological edge states enabling group-dispersionless slow light in magneto-optical photonic crystals[J]. Physical Review B, 99, 014103(2019).
[82] Chen J F, Liang W Y, Li Z Y. Broadband dispersionless topological slow light[J]. Optics Letters, 45, 4964-4967(2020).
[83] Zhuang S N, Chen J F, Liang W Y et al. Zero GVD slow-light originating from a strong coupling of one-way modes in double-channel magneto-optical photonic crystal waveguides[J]. Optics Express, 29, 2478-2487(2021).
[84] Colomés E, Franz M. Antichiral edge states in a modified Haldane nanoribbon[J]. Physical Review Letters, 120, 086603(2018).
[85] Chen J F, Liang W Y, Li Z Y. Antichiral one-way edge states in a gyromagnetic photonic crystal[J]. Physical Review B, 101, 214102(2020).
[86] Zhou P H, Liu G G, Yang Y H et al. Observation of photonic antichiral edge states[J]. Physical Review Letters, 125, 263603(2020).
[87] Xi X, Yan B, Yang L Y et al. Topological antichiral surface states in a magnetic Weyl photonic crystal[J]. Nature Communications, 14, 1991(2023).
[88] Yu L T, Xue H R, Zhang B L. Antichiral edge states in an acoustic resonator lattice with staggered air flow[J]. Journal of Applied Physics, 129, 235103(2021).
[89] Yang Y T, Zhu D J, Hang Z H et al. Observation of antichiral edge states in a circuit lattice[J]. Science China Physics, Mechanics & Astronomy, 64, 257011(2021).
[90] Chen J F, Li Z Y. Configurable topological beam splitting via antichiral gyromagnetic photonic crystal[J]. Opto-Electronic Science, 1, 220001(2022).
[91] Castro Neto A H, Guinea F, Peres N M R et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 81, 109-162(2009).
[92] Haldane F D M. Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”[J]. Physical Review Letters, 61, 2015-2018(1988).
[93] Chen J F, Li Z Y. Prediction and observation of robust one-way bulk states in a gyromagnetic photonic crystal[J]. Physical Review Letters, 128, 257401(2022).
[94] Sepkhanov R A, Bazaliy Y B, Beenakker C W J. Extremal transmission at the Dirac point of a photonic band structure[J]. Physical Review A, 75, 063813(2007).
[95] Zhang X D. Observing Zitterbewegungfor photons near the Dirac point of a two-dimensional photonic crystal[J]. Physical Review Letters, 100, 113903(2008).
[96] Sepkhanov R A, Ossipov A, Beenakker C W J. Extinction of coherent backscattering by a disordered photonic crystal with a Dirac spectrum[J]. EPL (Europhysics Letters), 85, 14005(2009).
[97] Ochiai T, Onoda M. Photonic analog of graphene model and its extension: dirac cone, symmetry, and edge states[J]. Physical Review B, 80, 155103(2009).
[98] Bittner S, Dietz B, Miski-Oglu M et al. Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene[J]. Physical Review B, 82, 014301(2010).
[100] Liu J W, Shi F L, Shen K et al. Antichiral surface states in time-reversal-invariant photonic semimetals[J]. Nature Communications, 14, 2027(2023).
[101] Zhang X M, Zhou Y Y, Sun X C et al. Reconfigurable light imaging in photonic higher-order topological insulators[J]. Nanomaterials, 12, 819(2022).
[102] Mandal S, Ge R, Liew T C H. Antichiral edge states in an exciton polariton strip[J]. Physical Review B, 99, 115423(2019).
[103] Denner M M, Lado J L, Zilberberg O. Antichiral states in twisted graphene multilayers[J]. Physical Review Research, 2, 043190(2020).
[104] Bhowmick D, Sengupta P. Antichiral edge states in Heisenberg ferromagnet on a honeycomb lattice[J]. Physical Review B, 101, 195133(2020).
[105] Wang C, Zhang L, Zhang P P et al. Influence of antichiral edge states on Andreev reflection in graphene-superconductor junction[J]. Physical Review B, 101, 045407(2020).
[106] Mannaï M, Haddad S. Strain tuned topology in the Haldane and the modified Haldane models[J]. Journal of Physics: Condensed Matter, 32, 225501(2020).
[107] Yang J E, Lü X L, Xie H. Modulation of antichiral edge states in zigzag honeycomb nanoribbons by side potentials[J]. Communications Physics, 6, 62(2023).
[108] Ivanov S K, Zhang Y Q, Kartashov Y V et al. Floquet topological insulator laser[J]. APL Photonics, 4, 126101(2019).
[109] He L, Addison Z, Jin J C et al. Floquet Chern insulators of light[J]. Nature Communications, 10, 4194(2019).
[110] Zhan F Y, Ning Z, Gan L Y et al. Floquet valley-polarized quantum anomalous Hall state in nonmagnetic heterobilayers[J]. Physical Review B, 105, L081115(2022).
[111] Pyrialakos G G, Beck J, Heinrich M et al. Bimorphic floquet topological insulators[J]. Nature Materials, 21, 634-639(2022).
[112] Yang Z J, Lustig E, Lumer Y et al. Photonic floquet topological insulators in a fractal lattice[J]. Light: Science & Applications, 9, 128(2020).
[113] Rechtsman M C, Zeuner J M, Plotnik Y et al. Photonic floquet topological insulators[J]. Nature, 496, 196-200(2013).
[114] Titum P, Lindner N H, Rechtsman M C et al. Disorder-induced floquet topological insulators[J]. Physical Review Letters, 114, 056801(2015).
[115] Wang B, Quan J Q, Han J F et al. Observation of photonic topological floquet time crystals[J]. Laser & Photonics Reviews, 16, 2100469(2022).
[116] Deng H, Haug H, Yamamoto Y. Exciton-polariton bose-einstein condensation[J]. Reviews of Modern Physics, 82, 1489-1537(2010).
[117] Klembt S, Harder T H, Egorov O A et al. Exciton-polariton topological insulator[J]. Nature, 562, 552-556(2018).
[118] Guo C, Asadchy V S, Zhao B et al. Light control with weyl semimetals[J]. eLight, 3, 2(2023).
[119] Liu M Q, Xia S, Wan W J et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films[J]. Nature Materials, 22, 1196-1202(2023).
[120] Shayegan K J, Biswas S, Zhao B et al. Direct observation of the violation of Kirchhoff’s law of thermal radiation[J]. Nature Photonics, 17, 891-896(2023).
[121] Süsstrunk R, Huber S D. Observation of phononic helical edge states in a mechanical topological insulator[J]. Science, 349, 47-50(2015).
[122] Xu G Q, Yang Y H, Zhou X et al. Diffusive topological transport in spatiotemporal thermal lattices[J]. Nature Physics, 18, 450-456(2022).
[123] Xu G Q, Zhou X, Yang S H et al. Observation of bulk quadrupole in topological heat transport[J]. Nature Communications, 14, 3252(2023).
[124] Xu L J, Xu G Q, Li J X et al. Thermal Willis coupling in spatiotemporal diffusive metamaterials[J]. Physical Review Letters, 129, 155901(2022).
Get Citation
Copy Citation Text
Zitao Ji, Jianfeng Chen, Zhiyuan Li. China's Top 10 Optical Breakthroughs: Antichiral Topological Photonic States (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(15): 1500001
Category: Reviews
Received: Nov. 6, 2023
Accepted: Dec. 11, 2023
Published Online: Apr. 3, 2024
The Author Email: Jianfeng Chen (jfchen@nus.edu.sg), Zhiyuan Li (phzyli@scut.edu.cn)
CSTR:32186.14.LOP232436