Chinese Journal of Lasers, Volume. 43, Issue 8, 810003(2016)
Effective Lidar Ratio of Cirrus Cloud Measured by Three-Wavelength Lidar
[1] [1] Goldfarb L, Keckhut P, Chanim M L, et al. Cirrus climatological results from lidar measurements at OHP(44°N, 6°E)[J]. Geophys Res Lett, 2001, 28(9): 1687-1690.
[2] [2] Heymsfield A J, Platt C M R. A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content[J]. J Atmos Sci, 1984, 41(5): 846-855.
[3] [3] Jensen E J, Toon O B, Selkirk H B, et al. On the formation and persistence of subvisible cirrus clouds near the tropical tropopause[J]. Journal of Geophysical Research: Atmopheres, 1996, 101(D16): 21361-21375.
[4] [4] Nazaryan H, Mc Cormick M P, Menzel W P. Global characterization of cirrus clouds using CALIPSO data[J]. Journal of Geophysical Research: Atmopheres, 2008, 113(D16): D16211.
[5] [5] Chen T, Rossow W B, Zhang Y. Radiative effects of cloud-type variations[J]. J Climate, 2000, 13(1): 264-286.
[6] [6] Chen Tao, Zhao Yujie, Liu Dong, et al. Inversion of micro-pulse lidar signals with a new calibration method[J]. Chinese J Lasers, 2012, 39(5): 0514001.
[10] [10] Wang Xiaopeng, Song Xiaoquan, Chen Yubao, et al. Observation and validation of cloud layer structures from the mobile doppler Lidar and radiosonde during spring in Beijing[J]. Acta Optica Sinica, 2015, 35(s2): s201001.
[11] [11] Wang Dongxiang, Song Xiaoquan, Feng Changzhong, et al. Coherent doppler lidar observations of marine atmospheric boundary layer height in the Bohai and Yellow Sea[J]. Acta Optica Sinica, 2015, 35(s1): s101001.
[12] [12] Shi Bo, Tao Zongming, Ma Xiaomin, et al. Measurements of near-ground aerosol backscattering coefficient profile with side-scatter technique[J]. Acta Optica Sinica, 2015, 35(5): 0501006.
[14] [14] Bao Qing, He Junliang, Zha Yong. Retrieval of aerosol extinction coefficient and optical thickness using varied lidar ratio[J]. Acta Optica Sinica, 2015, 35(3): 0301002.
[15] [15] Zhang Qingze, Zhang Hui, Wang Ping, et al. Retrieval methods of cirrus cloud effective lidar ratio[J]. Laser & Optoelectronics Progress, 2012, 49(6): 060102.
[16] [16] Chen W N, Chiang C W, Nee J B. Lidar ratio and depolarization ratio for cirrus clouds[J]. Appl Opt, 2002, 41(30): 6470-6476.
[18] [18] Sakai T, Nagai T, Nakazato M, et al. Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba[J]. Appl Opt, 2003, 42(36): 7103-7116.
[19] [19] Liu Dong, Tao Zongming, Wu Decheng, et al. Development of three-wavelength-Raman-polarization lidar system and case study[J]. Acta Optica Sinica, 2013, 33(2): 0228001.
[20] [20] Fernald F G, Analysis of atmosphere lidar observation: Some comments[J]. Appl Opt, 1984, 23(5): 652-653.
[22] [22] Key J R, Yang P, Baum B A. et al. Parameterization of shortwave ice cloud optical properties for various particle habits[J]. Journal of Geophysical Research(Atmospheres), 2002, 107(D13): AAC 7.
[24] [24] Ji Chengli, Tao Zongming, Hu Shunxing, et al. Cirrus measurement using three-wavelength lidar in Hefei[J]. Acta Optica Sinica, 2014, 34(4): 0401001.
Get Citation
Copy Citation Text
Ji Chengli, Tao Zongming, Hu Shunxing, Zhang Xuehai, Liu Dong, Wang Zhenzhu, Zhong Zhiqing, Xie Chenbo, Yuan Ke′e, Cao Kaifa, Huang Jian, Wang Yingjian. Effective Lidar Ratio of Cirrus Cloud Measured by Three-Wavelength Lidar[J]. Chinese Journal of Lasers, 2016, 43(8): 810003
Category: Remote Sensing and Sensors
Received: Mar. 8, 2016
Accepted: --
Published Online: Aug. 10, 2016
The Author Email: Chengli Ji (jcl0606@163.com)