Chinese Optics Letters, Volume. 20, Issue 9, 092701(2022)
Loss-tolerant measurement device independent quantum key distribution with reference frame misalignment
[1] C. H. Bennett, G. Brassard. Quantum cryptography: public key distribution and coin tossing. International Conference on Computer System and Signal Processing, 175(1984).
[2] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).
[3] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301(2009).
[4] Q. Zhang, F. Xu, Y.-A. Chen, C.-Z. Peng, J.-W. Pan. Large scale quantum key distribution: challenges and solutions. Opt. Express, 26, 24260(2018).
[5] N. Lütkenhaus, M. Jahma. Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys., 4, 44(2002).
[6] Y. Zhao, C.-H. Fred Fung, B. Qi, C. Chen, H.-K. Lo. Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A, 78, 042333(2008).
[7] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics, 4, 686(2010).
[8] X.-B. Wang. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett., 94, 230503(2005).
[9] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).
[10] Y.-H. Zhou, Z.-W. Yu, X.-B. Wang. Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A, 93, 042324(2016).
[11] H.-K. Lo, M. Curty, B. Qi. Measurement-device-independent quantum key distribution. Phys. Rev. Lett., 108, 130503(2012).
[12] W. Wang, F. Xu, H.-K. Lo. Asymmetric protocols for scalable high-rate measurement-device-independent quantum key distribution networks. Phys. Rev. X, 9, 041012(2019).
[13] Y.-L. Tang, H.-L. Yin, Q. Zhao, H. Liu, X.-X. Sun, M.-Q. Huang, W.-J. Zhang, S.-J. Chen, L. Zhang, L.-X. You, Z. Wang, Y. Liu, C.-Y. Lu, X. Jiang, X. Ma, Q. Zhang, T.-Y. Chen, J.-W. Pan. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X, 6, 011024(2016).
[14] G.-Z. Tang, S.-H. Sun, C.-Y. Li. Experimental point-to-multipoint plug-and-play measurement-device-independent quantum key distribution network. Chin. Phys. Lett., 36, 070301(2019).
[15] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H. Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen, M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang, X.-B. Wang, J.-W. Pan. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).
[16] K. Wei, W. Li, H. Tan, Y. Li, H. Min, W.-J. Zhang, H. Li, L. You, Z. Wang, X. Jiang, T.-Y. Chen, S.-K. Liao, C.-Z. Peng, F. Xu, J.-W. Pan. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X, 10, 031030(2020).
[17] L. Cao, W. Luo, Y. X. Wang, J. Zou, R. D. Yan, H. Cai, Y. Zhang, X. L. Hu, C. Jiang, W. J. Fan, X. Q. Zhou, B. Dong, X. S. Luo, G. Q. Lo, Y. X. Wang, Z. W. Xu, S. H. Sun, X. B. Wang, Y. L. Hao, Y. F. Jin, D. L. Kwong, L. C. Kwek, A. Q. Liu. Chip-based measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl., 14, 011001(2020).
[18] H. Semenenko, P. Sibson, A. Hart, M. G. Thompson, J. G. Rarity, C. Erven. Chip-based measurement-device-independent quantum key distribution. Optica, 7, 238(2020).
[19] Y. Cao, Y.-H. Li, K.-X. Yang, Y.-F. Jiang, S.-L. Li, X.-L. Hu, M. Abulizi, C.-L. Li, W. Zhang, Q.-C. Sun, W.-Y. Liu, X. Jiang, S.-K. Liao, J.-G. Ren, H. Li, L. You, Z. Wang, J. Yin, C.-Y. Lu, X.-B. Wang, Q. Zhang, C.-Z. Peng, J.-W. Pan. Long-distance free-space measurement-device-independent quantum key distribution(2020).
[20] A. Laing, V. Scarani, J. G. Rarity, J. L. O’Brien. Reference-frame-independent quantum key distribution. Phys. Rev. A, 82, 012304(2010).
[21] C.-M. Zhang, J.-R. Zhu, Q. Wang. Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A, 95, 032309(2017).
[22] C. Wang, Z.-Q. Yin, S. Wang, W. Chen, G.-C. Guo, Z.-F. Han. Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica, 4, 1016(2017).
[23] H. Liu, J. Wang, H. Ma, S. Sun. Polarization-multiplexing-based measurement-device-independent quantum key distribution without phase reference calibration. Optica, 5, 902(2018).
[24] X.-Y. Zhou, H.-J. Ding, M.-S. Sun, S.-H. Zhang, J.-Y. Liu, C.-H. Zhang, J. Li, Q. Wang. Reference-frame-independent measurement-device-independent quantum key distribution over 200 km of optical fiber. Phys. Rev. Appl., 15, 064016(2021).
[25] K. Tamaki, H.-K. Lo, C.-H. F. Fung, B. Qi. Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A, 85, 042307(2012).
[26] X.-B. Wang. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A, 87, 012320(2013).
[27] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, K. Azuma. Loss-tolerant quantum cryptography with imperfect sources. Phys. Rev. A, 90, 052314(2014).
[28] Z. Tang, K. Wei, O. Bedroya, L. Qian, H.-K. Lo. Experimental measurement-device-independent quantum key distribution with imperfect sources. Phys. Rev. A, 93, 042308(2016).
[29] M. Curty, F. Xu, W. Cui, C. C. W. Lim, K. Tamaki, H.-K. Lo. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun., 5, 3732(2014).
[30] H. Chen, X.-B. An, J. Wu, Z.-Q. Yin, S. Wang, W. Chen, Z.-F. Han. Hong–Ou–Mandel interference with two independent weak coherent states. Chin. Phys. B, 25, 020305(2016).
[31] F. Xu, M. Curty, B. Qi, H.-K. Lo. Practical aspects of measurement-device-independent quantum key distribution. New J. Phys., 15, 113007(2013).
[32] X. Ma, M. Razavi. Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A, 86, 062319(2012).
[33] J.-Y. Liu, X.-Y. Zhou, Q. Wang. Reference-frame-independent measurement-device-independent quantum key distribution using fewer states. Phys. Rev. A, 103, 022602(2021).
[34] Y. Xue, W. Chen, S. Wang, Z. Yin, L. Shi, Z. Han. Airborne quantum key distribution: a review. Chin. Opt. Lett., 19, 122702(2021).
[35] X. Wang, C. Dong, S. Zhao, Y. Liu, X. Liu, H. Zhu. Feasibility of space-based measurement-device-independent quantum key distribution. New J. Phys., 23, 045001(2021).
[36] J.-Y. Liu, X.-Y. Zhou, C.-H. Zhang, H.-J. Ding, Y.-P. Chen, J. Li, Q. Wang. Boosting the performance of reference-frame-independent measurement-device-independent quantum key distribution. J. Light. Technol., 39, 5486(2021).
[37] J.-Y. Liu, X.-Y. Zhou, Q. Wang. Reference-frame-independent measurement-device-independent quantum key distribution using fewer states. Phys. Rev. A, 103, 022602(2021).
Get Citation
Copy Citation Text
Jipeng Wang, Zhenhua Li, Zhongqi Sun, Tianqi Dou, Wenxiu Qu, Fen Zhou, Yanxin Han, Yuqing Huang, Haiqiang Ma, "Loss-tolerant measurement device independent quantum key distribution with reference frame misalignment," Chin. Opt. Lett. 20, 092701 (2022)
Category: Quantum Optics and Quantum Information
Received: Dec. 30, 2021
Accepted: May. 10, 2022
Published Online: Jun. 22, 2022
The Author Email: Haiqiang Ma (hqma@bupt.edu.cn)