Journal of Quantum Optics, Volume. 29, Issue 4, 40301(2023)
Effect of Imperfect Quantum Gates Operation under Noise on Quantum Scrambling and Damaged Information Recovery
[1] [1] SWINGLE B. Unscrambling the physics of out-of-time-order correlators[J]. Nature Physics, 2018, 14(10):988-990. DOI: 10.1038/s41567-018-0295-5.
[2] [2] IYODA E, SAGAWA T. Scrambling of quantum information in quantum many-body systems[J]. Physical Review A, 2018, 97(4):042330. DOI: 10.1103/PhysRevA.97.042330.
[3] [3] KUKULJAN I, GROZDANOV S, PROSEN T. Weak quantum chaos[J]. Physical Review B, 2017, 96(6):060301. DOI: 10.1103/PhysRevB.96.060301.
[4] [4] LANDSMAN K A, FIGGATT C, SCHUSTER T, et al. Verified quantum information scrambling[J]. Nature, 2019, 567(7746):61-65. DOI: 10.1038/s41586-019-0952-6.
[5] [5] SEKINO Y, SUSSKIND L. Fast scramblers[J]. Journal of High Energy Physics, 2008, 2008(10):065. DOI: 10.1088/1126-6708/2008/10/065.
[6] [6] LASHKARI N, STANFORD D, HASTINGS M, et al. Towards the fast scrambling conjecture[J]. Journal of High Energy Physics, 2013, 2013(4):22. DOI: 10.1007/JHEP04(2013)022.
[7] [7] HAYDEN P, PRESKILL J. Black holes as mirrors: quantum information in random subsystems[J]. Journal of high energy physics, 2007, 2007(09):120. DOI: 10.1088/1126-6708/2007/09/120.
[8] [8] SHENKER S H, STANFORD D. Black holes and the butterfly effect[J]. Journal of High Energy Physics, 2014, 2014(3):1-25. DOI: 10.1007/JHEP03(2014)067.
[9] [9] MALDACENA J, SHENKER S H, STANFORD D. A bound on chaos[J]. Journal of High Energy Physics, 2016, 2016(8):1-17. DOI: 10.1007/JHEP08(2016)106.
[10] [10] BLAKE M, DAVISON R A, SACHDEV S. Thermal diffusivity and chaos in metals without quasiparticles[J]. Physical Review D, 2017, 96(10):106008. DOI: 10.1103/PhysRevD.96.106008.
[11] [11] BANERJEE S, ALTMAN E. Solvable model for a dynamical quantum phase transition from fast to slow scrambling[J]. Physical Review B, 2017, 95(13):134302. DOI: 10.1103/PhysRevB.95.134302.
[12] [12] HOLMES Z, ARRASMITH A, YAN B, et al. Barren Plateaus Preclude Learning Scramblers [J]. Physical Review Letters, 2021, 126(19):190501. DOI: 10.1103/PhysRevLett.126.190501.
[13] [13] HOSUR P, QI X-L, ROBERTS D A, et al. Chaos in quantum channels[J]. Journal of High Energy Physics, 2016, 2016(2):4. DOI: 10.1007/JHEP02(2016)004.
[14] [14] SWINGLE B, BENTSENe G, SCHLEIER-SMITH M, et al. Measuring the scrambling of quantum information[J]. Physical Review A, 2016, 94(4):040302. DOI: 10.1103/PhysRevA.94.040302.
[15] [15] LEWIS-SWAN R J, SAFAVI-NAINI A, KAUFMAN A M, et al. Dynamics of quantum information [J]. Nature Reviews Physics, 2019, 1(10):627-634. DOI: 10.1038/s42254-019-0090-y.
[16] [16] GARTTNER M, BOHNET J G, SAFAVI-NAINI A, et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet[J]. Nature Physics, 2017, 13(8):781-786. DOI: 10.1038/nphys4119.
[17] [17] LI J, FAN R, WANG H, et al. Measuring Out-of-Time-Order Correlators on a Nuclear Magnetic Resonance Quantum Simulator[J]. Physical Review X, 2017, 7(3):031011. DOI: 10.1103/PhysRevX.7.031011.
[18] [18] YOSHIDA B, YAO N Y. Disentangling Scrambling and Decoherence via Quantum Teleportation[J]. Physical Review X, 2019, 9(1):011006. DOI: 10.1103/PhysRevX.9.011006.
[19] [19] BRAUMULLER J, KARAMLOU A H, YANAY Y, et al. Probing quantum information propagation with out-of-time-ordered correlators[J]. Nature Physics, 2022, 18(2):172-178. DOI: 10.1038/s41567-021-01430-w.
[20] [20] HAN L P, ZOU J, LI H, et al. Quantum Information Scrambling in Non-Markovian Open Quantum System[J]. Entropy, 2022, 24(11):1532. DOI: 10.3390/e24111532.
[21] [21] LARKIN A I, OVCHINNIKOV Y N. Quasiclassical method in the theory of superconductivity[J]. Sov Phys JETP, 1969, 28(6):1200-1205. DOI: CorpusID:117608877.
[22] [22] ALEINER I L, FAORO L, IOFFE L B. Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves[J]. Annals of Physics, 2016, 375:378-406. DOI: 10.1016/j.aop.2016.09.006.
[23] [23] HAEHL F, LOGANAYAGAM R, NARAYAN P, et al. Classification of out-of-time-order correlators[J]. SciPost Physics, 2019, 6(1):001. DOI: 10.21468/SciPostPhys.6.1.001.
[24] [24] HASHIMOTO K, MURATA K, YOSHII R. Out-of-time-order correlators in quantum mechanics[J]. Journal of High Energy Physics, 2017, 2017(10):138. DOI: 10.1007/JHEP10(2017)138.
[25] [25] SESHADRI A, MADHOK V, LAKSHMINARAYAN A. Tripartite mutual information, entanglement, and scrambling in permutation symmetric systems with an application to quantum chaos[J]. Physical Review E, 2018, 98(5):052205. DOI: 10.1103/PhysRevE.98.052205
[26] [26] YAN Z, ZHANG Y R, GONG M, et al. Strongly correlated quantum walks with a 12-qubit superconducting processor[J]. Science, 2019, 364(6442):753-736. DOI: 10.1126/science.aaw1611.
[27] [27] TOUIL A, DEFFNER S. Quantum scrambling and the growth of mutual information[J]. Quantum Science and Technology, 2020, 5(3):035005. DOI: 10.1088/2058-9565/ab8ebb.
[28] [28] BREUER H P, LAINE E M, PIILO J. Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems[J]. Physical Review Letters, 2009, 103(21):210401. DOI: 10.1103/PhysRevLett.103.210401.
[29] [29] CHAKRABORTY S, CHRUSCINSKI D. Information flow versus divisibility for qubit evolution[J]. Physical Review A, 2019, 99(4):042105. DOI: 10.1103/PhysRevA.99.042105.
[30] [30] YAN B, SINITSYN N A. Recovery of Damaged Information and the Out-of-Time-Ordered Correlators[J]. Physical Review Letters, 2020, 125(4):040605. DOI: 10.1103/PhysRevLett.125.040605.
[31] [31] https://www.scientificamerican.com/article/the-quantum-butterfly-noneffect/ [EB/OL].
[32] [32] CAO X, SCAFFIDI T. Origin and limit of the recovery of damaged information by time reversal[J]. Physical Review A, 2021, 103(2):L020401. DOI: 10.1103/PhysRevA.103.L020401.
[33] [33] ZHANG Y L, HUANG Y, CHEN X. Information scrambling in chaotic systems with dissipation[J]. Physical Review B, 2019, 99(1):014303. DOI: 10.1103/PhysRevB.99.014303.
[34] [34] ZANARDI P, ANAND N. Information scrambling and chaos in open quantum systems[J]. Physical Review A, 2021, 103(6):062214. DOI: 10.1103/PhysRevA.103.062214.
[35] [35] HARRIS J, YAN B, SINITSYN N A. Benchmarking Information Scrambling[J]. Physical Review Letters, 2022, 129(5):050602. DOI: 10.1103/PhysRevLett.129.050602.
[36] [36] SWINGLE B, YUNGER HALPERN N. Resilience of scrambling measurements[J]. Physical Review A, 2018, 97(6):062113. DOI: 10.1103/PhysRevA.97.062113.
[37] [37] KNAP M. Entanglement production and information scrambling in a noisy spin system[J]. Physical Review B, 2018, 98(18):184416. DOI: 10.1103/PhysRevB.98.184416.
[38] [38] SYZRANOV S V, GORSHKOV A V, GALITSKI V. Out-of-time-order correlators in finite open systems[J]. Physical Review B, 2018, 97(16):161114. DOI: 10.1103/PhysRevB.97.161114.
[39] [39] JOSHI M K, ELBEN A, VERMERSCH B, et al. Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions[J]. Physical Review Letters, 2020, 124(24):240505. DOI: 10.1103/PhysRevLett.124.240505.
[40] [40] TOUIL A, DEFFNER S. Information Scrambling versus Decoherence-Two Competing Sinks for Entropy[J]. PRX Quantum, 2021, 2(1):010306. DOI: 10.1103/PRXQuantum.2.010306.
[41] [41] DOMINGUEZ F D, LVAREZ G A. Dynamics of quantum information scrambling under decoherence effects measured via active spin clusters[J]. Physical Review A, 2021, 104(6):062406. DOI: 10.1103/PhysRevA.104.062406.
[42] [42] ALTHERR A, YANG Y. Quantum Metrology for Non-Markovian Processes[J]. Physical Review Letters, 2021, 127(6):060501. DOI: 10.1103/PhysRevLett.127.060501.
[43] [43] CICCARELLO F, PALMA G M, GIOVANNETTI V. Collision-model-based approach to non-Markovian quantum dynamics[J]. Physical Review A, 2013, 87(4):040103. DOI: 10.1103/PhysRevA.87.040103.
[44] [44] KRETSCHMER S, LUOMA K, STRUNZ W T. Collision model for non-Markovian quantum dynamics[J]. Physical Review A, 2016, 94(1):012106. DOI: 10.1103/PhysRevA.94.012106.
[45] [45] CUEVAS , GERALDI A, LIORNI C, et al. All-optical implementation of collision-based evolutions of open quantum systems[J]. Scientific Reports, 2019, 9(1):3205. DOI: https://doi.org/10.1038/s41598-019-39832-9.
[46] [46] NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. Cambridge: United Kingdom at the University Press, 2010.
[47] [47] TOUIL A, YAN B, GIROLAMI D, et al. Eavesdropping on the Decohering Environment: Quantum Darwinism, Amplification, and the Origin of Objective Classical Reality[J]. Physical Review Letters, 2022, 128(1):010401. DOI: 10.1103/PhysRevLett.128.010401.
Get Citation
Copy Citation Text
DUAN Hong-xiao, WANG Chuan, WANG Tie-jun. Effect of Imperfect Quantum Gates Operation under Noise on Quantum Scrambling and Damaged Information Recovery[J]. Journal of Quantum Optics, 2023, 29(4): 40301
Received: May. 4, 2023
Accepted: Aug. 7, 2025
Published Online: Aug. 7, 2025
The Author Email: