Chinese Journal of Lasers, Volume. 50, Issue 9, 0907207(2023)
Microstructure and Anti-Instability Behavior of Bone Hole Drilled by Laser for Clinical Surgery
[1] Tsai Y Y, Chang S W. Pullout strength of triply periodic minimal surface-structured bone implants[J]. International Journal of Mechanical Sciences, 237, 107795(2023).
[2] Singh R P, Gupta V, Pandey P M et al. Effect of drilling techniques on microcracks and pull-out strength of cortical screw fixed in human tibia: an in-vitro study[J]. Annals of Biomedical Engineering, 49, 382-393(2021).
[3] Yang Q, Ji L F, Xu B et al. Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3 glass[J]. Opto-Electronic Engineering, 44, 1200-1209, 1247(2017).
[4] Han J, Liu Y, Deng Z J et al. Optimizing noise characteristics of mode-locked Yb-doped fiber laser using gain-induced RIN-transfer dynamics[J]. High Power Laser Science and Engineering, 9, e36(2021).
[5] Chen L, Liu Z L, Guo C et al. Nanosecond laser-induced controllable periodical surface structures on silicon[J]. Chinese Optics Letters, 20, 013802(2022).
[6] Zhao H B, Zhang X Z, Zhan Z L et al. Influence of an applied water film on bone hard tissue ablation with pulsed CO2 laser[J]. Chinese Journal of Lasers, 38, 0104002(2011).
[7] Zhang X Z, Guo J, Zhan Z L et al. Water spray-assisted ablation of bone hard tissue with pulsed CO2 laser[J]. Acta Optica Sinica, 30, 2069-2073(2010).
[8] Li C L, Fisher C J, Burke R et al. Orthopedics-related applications of ultrafast laser and its recent advances[J]. Applied Sciences, 12, 3957(2022).
[9] Song Y, Hu G Q, Zhang Z et al. Real-time spectral response guided smart femtosecond laser bone drilling[J]. Optics and Lasers in Engineering, 128, 106017(2020).
[10] Matys J, Flieger R, Tenore G et al. Er∶YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis: an animal study[J]. Lasers in Medical Science, 33, 489-495(2018).
[11] Panduric D G, Juric I B, Music S et al. Morphological and ultrastructural comparative analysis of bone tissue after Er∶YAG laser and surgical drill osteotomy[J]. Photomedicine and Laser Surgery, 32, 401-408(2014).
[12] Robles-Linares J A, Axinte D, Liao Z R et al. Machining-induced thermal damage in cortical bone: Necrosis and micro-mechanical integrity[J]. Materials & Design, 197, 109215(2021).
[13] Zhou Y X, Kastner M J, Tighe T B et al. Elastic modulus mapping for bovine cortical bone from submillimeter- to submicron-scales using PeakForce Tapping atomic force microscopy[J]. Extreme Mechanics Letters, 41, 101031(2020).
[14] Chatzistergos P E, Magnissalis E A, Kourkoulis S K. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model[J]. Medical Engineering & Physics, 32, 145-154(2010).
[15] Yan Y B, Pei G X, Sang H X et al. Screw-bone finite element models for screw pullout simulation[J]. Chinese Journal of Orthopaedic Trauma, 15, 28-31(2013).
[16] Zhang J R, Guan K, Zhang Z et al. In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank bone[J]. Optics Express, 28, 25528-25544(2020).
[17] McGovern J A, Griffin M, Hutmacher D W. Animal models for bone tissue engineering and modelling disease[J]. Disease Models & Mechanisms, 11, dmm033084(2018).
[18] Ji L F, Zhang L T, Cao L J et al. Laser rapid drilling of bone tissue in minimizing thermal injury and debris towards orthopedic surgery[J]. Materials & Design, 220, 110895(2022).
[19] Parker S. Surgical lasers and hard dental tissue[J]. British Dental Journal, 202, 445-454(2007).
[20] Chang Z, Chen P Y, Chuang Y J et al. Zebrafish as a model to study bone maturation: Nanoscale structural and mechanical characterization of age-related changes in the zebrafish vertebral column[J]. Journal of the Mechanical Behavior of Biomedical Materials, 84, 54-63(2018).
[21] Chen L, Wen G Q, Guo F et al. Fractal characteristics of microstructures on a superhydrophobic silicone rubber surface induced by a nanosecond laser[J]. Chinese Journal of Lasers, 48, 0602201(2021).
[22] Kim G J, Yoo H S, Lee K J et al. Image of the micro-computed tomography and atomic-force microscopy of bone in osteoporosis animal model[J]. Journal of Nanoscience and Nanotechnology, 18, 6726-6731(2018).
[23] O'Brien F J, Taylor D, Clive Lee T. The effect of bone microstructure on the initiation and growth of microcracks[J]. Journal of Orthopaedic Research, 23, 475-480(2005).
[24] Shu L M, Sugita N. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103599(2020).
Get Citation
Copy Citation Text
Mengxue Chen, Lingfei Ji, Litian Zhang, Lijie Cao, Hangru Wei, Weigao Sun. Microstructure and Anti-Instability Behavior of Bone Hole Drilled by Laser for Clinical Surgery[J]. Chinese Journal of Lasers, 2023, 50(9): 0907207
Category: Optical Diagnostics and Therapy
Received: Jan. 16, 2023
Accepted: Feb. 16, 2023
Published Online: Apr. 24, 2023
The Author Email: Ji Lingfei (ncltji@bjut.edu.cn)