Chinese Journal of Lasers, Volume. 50, Issue 9, 0907207(2023)

Microstructure and Anti-Instability Behavior of Bone Hole Drilled by Laser for Clinical Surgery

Mengxue Chen1,2,3, Lingfei Ji1,2,3、*, Litian Zhang1,2,3, Lijie Cao1,2,3, Hangru Wei1,2,3, and Weigao Sun1,2,3
Author Affiliations
  • 1Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Key Laboratory of Trans-Scale Laser Manufacturing Technology of Ministry of Education, Beijing University of Technology, Beijing 100124, China
  • 3Beijing Engineering Research Center of Laser Applied Technology, Beijing 100124, China
  • show less
    References(24)

    [1] Tsai Y Y, Chang S W. Pullout strength of triply periodic minimal surface-structured bone implants[J]. International Journal of Mechanical Sciences, 237, 107795(2023).

    [2] Singh R P, Gupta V, Pandey P M et al. Effect of drilling techniques on microcracks and pull-out strength of cortical screw fixed in human tibia: an in-vitro study[J]. Annals of Biomedical Engineering, 49, 382-393(2021).

    [3] Yang Q, Ji L F, Xu B et al. Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3 glass[J]. Opto-Electronic Engineering, 44, 1200-1209, 1247(2017).

    [4] Han J, Liu Y, Deng Z J et al. Optimizing noise characteristics of mode-locked Yb-doped fiber laser using gain-induced RIN-transfer dynamics[J]. High Power Laser Science and Engineering, 9, e36(2021).

    [5] Chen L, Liu Z L, Guo C et al. Nanosecond laser-induced controllable periodical surface structures on silicon[J]. Chinese Optics Letters, 20, 013802(2022).

    [6] Zhao H B, Zhang X Z, Zhan Z L et al. Influence of an applied water film on bone hard tissue ablation with pulsed CO2 laser[J]. Chinese Journal of Lasers, 38, 0104002(2011).

    [7] Zhang X Z, Guo J, Zhan Z L et al. Water spray-assisted ablation of bone hard tissue with pulsed CO2 laser[J]. Acta Optica Sinica, 30, 2069-2073(2010).

    [8] Li C L, Fisher C J, Burke R et al. Orthopedics-related applications of ultrafast laser and its recent advances[J]. Applied Sciences, 12, 3957(2022).

    [9] Song Y, Hu G Q, Zhang Z et al. Real-time spectral response guided smart femtosecond laser bone drilling[J]. Optics and Lasers in Engineering, 128, 106017(2020).

    [10] Matys J, Flieger R, Tenore G et al. Er∶YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: primary stability analysis: an animal study[J]. Lasers in Medical Science, 33, 489-495(2018).

    [11] Panduric D G, Juric I B, Music S et al. Morphological and ultrastructural comparative analysis of bone tissue after Er∶YAG laser and surgical drill osteotomy[J]. Photomedicine and Laser Surgery, 32, 401-408(2014).

    [12] Robles-Linares J A, Axinte D, Liao Z R et al. Machining-induced thermal damage in cortical bone: Necrosis and micro-mechanical integrity[J]. Materials & Design, 197, 109215(2021).

    [13] Zhou Y X, Kastner M J, Tighe T B et al. Elastic modulus mapping for bovine cortical bone from submillimeter- to submicron-scales using PeakForce Tapping atomic force microscopy[J]. Extreme Mechanics Letters, 41, 101031(2020).

    [14] Chatzistergos P E, Magnissalis E A, Kourkoulis S K. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model[J]. Medical Engineering & Physics, 32, 145-154(2010).

    [15] Yan Y B, Pei G X, Sang H X et al. Screw-bone finite element models for screw pullout simulation[J]. Chinese Journal of Orthopaedic Trauma, 15, 28-31(2013).

    [16] Zhang J R, Guan K, Zhang Z et al. In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank bone[J]. Optics Express, 28, 25528-25544(2020).

    [17] McGovern J A, Griffin M, Hutmacher D W. Animal models for bone tissue engineering and modelling disease[J]. Disease Models & Mechanisms, 11, dmm033084(2018).

    [18] Ji L F, Zhang L T, Cao L J et al. Laser rapid drilling of bone tissue in minimizing thermal injury and debris towards orthopedic surgery[J]. Materials & Design, 220, 110895(2022).

    [19] Parker S. Surgical lasers and hard dental tissue[J]. British Dental Journal, 202, 445-454(2007).

    [20] Chang Z, Chen P Y, Chuang Y J et al. Zebrafish as a model to study bone maturation: Nanoscale structural and mechanical characterization of age-related changes in the zebrafish vertebral column[J]. Journal of the Mechanical Behavior of Biomedical Materials, 84, 54-63(2018).

    [21] Chen L, Wen G Q, Guo F et al. Fractal characteristics of microstructures on a superhydrophobic silicone rubber surface induced by a nanosecond laser[J]. Chinese Journal of Lasers, 48, 0602201(2021).

    [22] Kim G J, Yoo H S, Lee K J et al. Image of the micro-computed tomography and atomic-force microscopy of bone in osteoporosis animal model[J]. Journal of Nanoscience and Nanotechnology, 18, 6726-6731(2018).

    [23] O'Brien F J, Taylor D, Clive Lee T. The effect of bone microstructure on the initiation and growth of microcracks[J]. Journal of Orthopaedic Research, 23, 475-480(2005).

    [24] Shu L M, Sugita N. Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103599(2020).

    Tools

    Get Citation

    Copy Citation Text

    Mengxue Chen, Lingfei Ji, Litian Zhang, Lijie Cao, Hangru Wei, Weigao Sun. Microstructure and Anti-Instability Behavior of Bone Hole Drilled by Laser for Clinical Surgery[J]. Chinese Journal of Lasers, 2023, 50(9): 0907207

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Diagnostics and Therapy

    Received: Jan. 16, 2023

    Accepted: Feb. 16, 2023

    Published Online: Apr. 24, 2023

    The Author Email: Ji Lingfei (ncltji@bjut.edu.cn)

    DOI:10.3788/CJL230462

    Topics