Chinese Journal of Lasers, Volume. 44, Issue 7, 703011(2017)
Fluorescence Property of Two-Dimensional Materials/PTCDA Heterojunctions
[1] [1] Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials[J]. Chem Rev, 2013, 113(5): 3766-3798.
[2] [2] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453.
[3] [3] Zhang Y, Chang T R, Zhou B, et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2[J]. Nat Nanotechnol, 2014, 9(2): 111-115.
[4] [4] Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10(4): 1271-1275.
[5] [5] Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12(7): 3695-3700.
[6] [6] Britnell L, Ribeiro R M, Eckmann A, et al. Strong light-matter interactions in heterostructures of atomically thin films[J]. Science, 2013, 340(6138): 1311-1314.
[7] [7] Matin A, Lien D H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS2[J]. Science, 2015, 350(6264): 1065-1068.
[8] [8] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6: 183-191.
[9] [9] Campoy-Quiles M, Heliotis G, Xia R, et al. Ellipsometric characterization of the optical constants of polyfluorene gain media[J]. Adv Funct Mater, 2005, 15(6): 925-933.
[10] [10] Heeger A J. Semiconducting and metallic polymers:The fourth generation of polymeric materials[J]. Rev Mod Phys, 2001, 73(3): 681-700.
[11] [11] Heeger A J. 25th anniversary article: Bulk heterojunction solar cells:Understanding the mechanism of operation[J]. Adv Mater, 2014, 26(1): 10-27.
[12] [12] Pak J, Jang J, Cho K, et al. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine[J]. Nanoscale, 2015, 7(44): 18780-18788.
[13] [13] Jariwala D, Howell S L, Chen K S, et al. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2[J]. Nano Lett, 2016, 16(1): 497-503.
[14] [14] He X, Chow W, Liu F, et al. MoS2/Rubrene van der Waals heterostructure: Toward ambipolar field-effect transistors and inverter circuits[J]. Small, 2017, 13(2): 1602558.
[15] [15] Senthilkumar V, Tam L C, Kim Y S, et al. Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers[J]. Nano Res, 2014, 7(12): 1759-1768.
[16] [16] Liu L, Zhou H, Cheng R, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J]. ACS Nano, 2012, 6(9): 8241-8249.
[17] [17] Zhang J, Yu H, Chen W, et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes[J]. ACS Nano, 2014, 8(6): 6024-6030.
[18] [18] Kaiser R, Friedrich M, Schmitz-Hübsch T, et al. Ultra-thin PTCDA layers studied by optical spectroscopies[J]. Anal Bioanal Chem, 1999, 363(2): 189-192.
[19] [19] Li S L, Miyazaki H, Song H, et al. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates[J]. ACS Nano, 2012, 6(8): 7381-7388.
[20] [20] Lee C, Yan H, Brus L E, et al. Anomalous lattice vibrations of single and few-layer MoS2[J]. ACS Nano, 2010, 4(5): 2695-2700.
[21] [21] Wang Y Y, Ni Z H, Yu T, et al. Raman studies of monolayer graphene: The substrate effect[J]. J Phys Chem C, 2008, 112(29): 10637-10640.
[22] [22] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 187401.
[23] [23] Joo P, Jo K, Ahn G, et al. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence[J]. Nano Lett, 2014, 14(11): 6456-6462.
[24] [24] Mālnieks K, Mezinskis G, Pavlovska I, et al. Optical, photocatalytical and structural properties of TiO2-SiO2 sol-gel coatings on high content SiO2 enamel surface[J]. Mater Sci, 2015, 21(1): 100-104.
[25] [25] Schlaf R, Parkinson B A, Lee P A, et al. HOMO/LUMO alignment at PTCDA/ZnPc and PTCDA/ClInPc heterointerfaces determined by combined UPS and XPS measurements[J]. J Phys Chem B, 1999, 103(15): 2984-2992.
[26] [26] Yu Y J, Zhao Y, Ryu S, et al. Tuning the graphene work function by electric field effect[J]. Nano Lett, 2009, 9(10): 3430-3434.
[27] [27] Jun K, Sefaattin T, Jian Z, et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013, 102(1): 012111.
[28] [28] Homan S, Sangwan V K, Balla I, et al. Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction[J]. Nano Lett, 2017, 17(1): 164-169.
[29] [29] Sakurai M, Tada H, Saiki K, et al. van der Waals epitaxial growth of C60 film on a cleaved face of MoS2[J]. Japanese Journal of Applied Physics, 1991, 30(2): 1892-1894.
[30] [30] Salvana G, Tenne D A, Das A, et al. Influence of deposition temperature on the structure of 3,4,9,10-perylene tetracarboxylic dianhydride thin films on H-passivated silicon probed by Raman spectroscopy[J]. Organic Electronics, 2000, 1(1): 49-56.
[31] [31] Salvan G, Himcinschi C, Kobitski A Y, et al. Crystallinity of PTCDA films on silicon derived via optical spectroscopic measurements[J]. Appl Surf Sci, 2001, 175-176: 363-368.
[32] [32] Podzorov V, Menard E, Borissov A, et al. Intrinsic charge transport on the surface of organic semiconductors[J]. Phys Rev Lett, 2004, 93(8): 086602.
[33] [33] Shi H, Yan R, Bertolazzi S, et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals[J]. ACS Nano, 2013, 7(2): 1072-1080.
Get Citation
Copy Citation Text
Li Hongfei, Liang Tao, Xie Shuang, Wang Shengping, Ye Neng, Xu Mingsheng. Fluorescence Property of Two-Dimensional Materials/PTCDA Heterojunctions[J]. Chinese Journal of Lasers, 2017, 44(7): 703011
Special Issue:
Received: Mar. 23, 2017
Accepted: --
Published Online: Jul. 5, 2017
The Author Email: Li Hongfei (Lee4896559@163.com)