Chinese Optics, Volume. 17, Issue 5, 1087(2024)

Self-supervised learning enhancement and detection methods for nocturnal animal images

Chi WANG1, Chen SHEN1, Qing HUANG2, Guo-feng ZHANG1, Han LU1, and Jin-bo CHEN1、*
Author Affiliations
  • 1School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
  • 2Aviation Industry Corporation of China Luoyang Electro-Optical Equipment Research Institute, Luoyang 471023, China
  • show less
    Figures & Tables(12)
    Convolution principle of PConv
    Overall structure of Zero-Denoise network
    Schematic diagram of Shuffle Attention mechanism
    Overall structure of RepGPFN
    Overall structure of improved YOLOv8
    Various animal species in the dataset
    Performance comparison of various advanced image enhancement algorithms
    Visualization results of enhanced and unenhanced target detection
    • Table 1. Evaluation results of different algorithms

      View table
      View in Article

      Table 1. Evaluation results of different algorithms

      算法PSNRSSIMMAERuntime(s)
      无监督自监督Zero-DCE ++27.930.572544.93930.0008
      SCI27.900.525448.75500.000 6
      Zero-Denoise(ours)28.530.766 526.151 60.0181
      有监督StableLLVE27.920.737332.47890.5900
      URetinex-Net28.450.833 221.156 20.0367
      Retinexnet28.060.425032.01740.1200
      MBLLEN28.040.724731.24988.5633
      Zero-Denoise(ours)28.530.766526.15160.018 1
    • Table 2. Experimental results of improved YOLOv8 ablation

      View table
      View in Article

      Table 2. Experimental results of improved YOLOv8 ablation

      算法改进主干改进颈部改进损失PRmAP@0.5mAP@0.5:0.95
      YOLOv872.370.880.749.7
      A73.3(+1.0%)72.3(+1.5%)81.2(+0.5%)50.3(+0.6%)
      B75.0(+2.7%)74.6(+3.8%)81.4(+0.7%)50.4(+0.7%)
      C73.372.3(+1.5%)80.9(+0.2%)50.1(+0.4%)
      D76.0(+3.7%)74.9(+4.1%)81.9(+1.2%)51.3(+1.4%)
      Ours77.9(+5.6%)75.2(+5.6%)82.2(+1.5%)51.7+(2.0%)
    • Table 3. The effect of different algorithms on improved YOLOv8

      View table
      View in Article

      Table 3. The effect of different algorithms on improved YOLOv8

      算法RabbitBirdChickenMouseDuckmAP@0.5
      Im-YOLOv894.086.562.280.363.582.2
      URetinex-Net+Im-YOLOv894.588.073.591.966.283.5(+1.3%)
      StableLLVE+Im-YOLOv893.590.671.682.264.582.5(+0.3%)
      SCI+Im-YOLOv894.791.172.093.269.584.7(+2.5%)
      Retinexnet+Im-YOLOv889.276.660.968.558.778.5(-3.7%)
      MBLLEN+Im-YOLOv894.290.872.589.065.583.1(+1.1%)
      Zero-Denoise+Im-YOLOv895.091.774.697.476.087.8(+5.6%)
    • Table 4. Visualization results comparison of enhanced and unenhanced target detection

      View table
      View in Article

      Table 4. Visualization results comparison of enhanced and unenhanced target detection

      组别应检个数/实检个数检测精度结论
      a鸽类增强后检测结果3/30.49/0.79/0.89未增强图像出现漏检数量1,阴影处鸽类未检出
      b鸽类未增强检测结果3/20.00/0.81/0.88
      c鸡类增强后检测结果6/60.55/0.80/0.81/0.85/0.57/0.46未增强图像出现漏检数量2,角落处和被遮挡的鸡类未检出
      d鸡类未增强检测结果6/40.00/0.84/0.89/0.83/0.85/0.00
      e鸭类增强后检测结果3/30.50/0.86/0.81未增强图像出现漏检数量1,深处的鸭类未检出
      f鸭类未增强检测结果3/20.00/0.71/0.68
      g鸭类增强后检测结果4/40.27/0.66/0.82/0.36未增强图像出现漏检数量2,左侧和右侧阴影内鸭类未检出
      h鸭类未增强检测结果4/20.00/0.31/0.88/0.00
      i鼠类增强后检测结果4/40.87/0.82/0.88/0.80增强图像中鼠类检测精度提升明显,从0.27、0.26提升至0.82、0.80
      j鼠类未增强检测结果4/40.83/0.27/0.87/0.26
      k兔类增强后检测结果1/10.90增强图像中兔类检测精度提升明显,从0.77提升至0.90
      l兔类未增强检测结果1/10.77
    Tools

    Get Citation

    Copy Citation Text

    Chi WANG, Chen SHEN, Qing HUANG, Guo-feng ZHANG, Han LU, Jin-bo CHEN. Self-supervised learning enhancement and detection methods for nocturnal animal images[J]. Chinese Optics, 2024, 17(5): 1087

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 11, 2024

    Accepted: --

    Published Online: Dec. 31, 2024

    The Author Email:

    DOI:10.37188/CO.2024-0011

    Topics