The Journal of Light Scattering, Volume. 36, Issue 3, 343(2024)
Stimulated Raman microscopy and its application in stain-free histopathology
[1] [1] Yoon S, Kim M, Jang M, et al. Deep optical imaging within complex scattering media[J]. Nature Reviews Physics, 2020, 2(3): 141-158.
[3] [3] Cao R, Nelson S D, Davis S, et al. Label-free intraoperative histology of bone tissue via deep-learning-assisted ultraviolet photoacoustic microscopy[J]. Nature Biomedical Engineering, 2022, 7(2): 124-134.
[5] [5] Fereidouni F, Harmany Z T, Tian M, et al. Microscopy with ultraviolet surface excitation for rapid slide-free histology[J]. Nature Biomedical Engineering, 2017, 1(12): 957-966.
[6] [6] Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10): 578-589.
[7] [7] Zipfel W R, Williams R M, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation[J]. Proceedings of the National Academy of Sciences, 2003, 100(12): 7075-7080.
[8] [8] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 1982, 7(8): 350-352.
[9] [9] Zumbusch A, Holtom G R, Xie X S. Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.
[10] [10] Freudiger C W, Min W, Saar B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-61.
[11] [11] Petibois C, Déléris G. Chemical mapping of tumor progression by FT-IR imaging: towards molecular histopathology[J]. Trends in Biotechnology, 2006, 24(10): 455-462.
[12] [12] Zhang D, Li C, Zhang C, et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution[J]. Science Advances, 2016, 2(9): e1600521.
[13] [13] Bai Y, Yin J, Cheng J-X. Bond-selective imaging by optically sensing the mid-infrared photothermal effect[J]. Science Advances, 2021, 7(20): eabg1559.
[14] [14] Jordan M I, Mitchell T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
[15] [15] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[16] [16] Banerji S, Mitra S. Deep learning in histopathology: A review[J]. WIREs Data Mining and Knowledge Discovery, 2022, 12(1): e1439.
[17] [17] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121: 501-502.
[18] [18] Woodbury E J, Ng W K. Ruby laser operation in the near IR[J]. proc. IRE, 1962, 50(11): 2347-2348.
[19] [19] Maker P D, Terhune R W. Study of optical effects due to an induced polarization third order in the electric field strength[J]. Physical Review, 1965, 137(3A): A801.
[20] [20] Gao X, Li X, Min W. Absolute Stimulated Raman Cross Sections of Molecules[J]. The Journal of Physical Chemistry Letters, 2023, 14(24): 5701-5708.
[21] [21] Min W, Gao X. Raman scattering and vacuum fluctuation: An Einstein-coefficient-like equation for Raman cross sections[J]. The Journal of Chemical Physics, 2023, 159(19): 194103.
[22] [22] Min W, Gao X. Fundamental detectability of Raman scattering: A unified diagrammatic approach[J]. The Journal of Chemical Physics, 2024, 160(9): 094110.
[23] [23] Cheng J-X, Min W, Ozeki Y, et al. Stimulated Raman scattering microscopy: Techniques and applications[M]. Elsevier, 2021.
[24] [24] Freudiger C W, Min W, Holtom G R, et al. Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy[J]. Nat Photonics, 2011, 5(2): 103-109.
[25] [25] Fu D, Lu F K, Zhang X, et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy[J]. J Am Chem Soc, 2012, 134(8): 3623-3626.
[26] [26] Cheng J-X, Xie X S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine[J]. Science, 2015, 350(6264): aaa8870.
[27] [27] Lin H, Cheng J-X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science[J]. eLight, 2023, 3(1): 6.
[28] [28] Saar B G, Freudiger C W, Reichman J, et al. Video-rate molecular imaging in vivo with stimulated Raman scattering[J]. Science, 2010, 330(6009): 1368-1370.
[29] [29] Slipchenko M N, Chen H, Ely D R, et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy[J]. Analyst, 2010, 135(10): 2613-2619.
[30] [30] Fu D, Yang W, Xie X S. Label-free Imaging of Neurotransmitter Acetylcholine at Neuromuscular Junctions with Stimulated Raman Scattering[J]. Journal of the American Chemical Society, 2017, 139(2): 583-586.
[31] [31] Zhang D, Slipchenko M N, Leaird D E, et al. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper[J]. Opt Express, 2013, 21(11): 13864-13874.
[32] [32] Andreana M, Houle M A, Moffatt D J, et al. Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy[J]. Opt Express, 2015, 23(22): 28119-28131.
[33] [33] Hofer M, Balla N K, Brasselet S. High-speed polarization-resolved coherent Raman scattering imaging[J]. Optica, 2017, 4(7): 795-801.
[34] [34] De Andrade R B, Kerdoncuff H, Berg-S?rensen K, et al. Quantum-enhanced continuous-wave stimulated Raman scattering spectroscopy[J]. Optica, 2020, 7(5): 470-475.
[35] [35] Casacio C A, Madsen L S, Terrasson A, et al. Quantum-enhanced nonlinear microscopy[J]. Nature, 2021, 594(7862): 201-206.
[36] [36] Xu Z, Oguchi K, Taguchi Y, et al. Quantum-enhanced stimulated Raman scattering microscopy in a high-power regime[J]. Opt Lett, 2022, 47(22): 5829-5832.
[37] [37] Wei L, Chen Z, Shi L, et al. Super-multiplex vibrational imaging[J]. Nature, 2017, 544(7651): 465-470.
[38] [38] Xiong H, Shi L, Wei L, et al. Stimulated Raman Excited Fluorescence Spectroscopy and Imaging[J]. Nat Photonics, 2019, 13(6): 412-417.
[39] [39] Zong C, Premasiri R, Lin H, et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity[J]. Nat Commun, 2019, 10(1): 5318.
[40] [40] Zhu Y, Ge X, Ni H, et al. Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging[J]. Sci Adv, 2023, 9(43): eadi2181.
[41] [41] Kong L, Ji M, Holtom G R, et al. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator[J]. Opt Lett, 2013, 38(2): 145-147.
[42] [42] Ozeki Y, Umemura W, Otsuka Y, et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering[J]. Nature Photonics, 2012, 6(12): 845-851.
[43] [43] Zhang D, Wang P, Slipchenko M N, et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis[J]. Anal Chem, 2013, 85(1): 98-106.
[44] [44] Liao C-S, Huang K-C, Hong W, et al. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning[J]. Optica, 2016,3: 1377-1380.
[45] [45] He R, Liu Z, Xu Y, et al. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line[J]. Opt Lett, 2017, 42(4): 659-662.
[46] [46] Lin H, Lee H J, Tague N, et al. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning[J]. Nat Commun, 2021, 12(1): 3052.
[47] [47] Yan S, Li Y, Huang Z, et al. High-Speed Stimulated Raman Scattering Microscopy Using Inertia-Free AOD Scanning[J]. J Phys Chem B, 2023, 127(19): 4229-4234.
[48] [48] Alshaykh M S, Liao C S, Sandoval O E, et al. High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines[J]. Opt Lett, 2017, 42(8): 1548-1551.
[49] [49] Lin H, Liao C S, Wang P, et al. Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion[J]. Light Sci Appl, 2018, 7: 17179.
[50] [50] Berto P, Scotte C, Galland F, et al. Programmable single-pixel-based broadband stimulated Raman scattering[J]. Opt Lett, 2017, 42(9): 1696-1699.
[51] [51] Bae K, Zheng W, Huang Z. Spatial light-modulated stimulated Raman scattering (SLM-SRS) microscopy for rapid multiplexed vibrational imaging[J]. Theranostics, 2020, 10(1): 312-322.
[52] [52] He R, Xu Y, Zhang L, et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging[J]. Optica, 2016, 4(1): 44-47.
[53] [53] Zhang L, Shen S, Liu Z, Ji M. Label-Free, Quantitative Imaging of MoS2-Nanosheets in Live Cells with Simultaneous Stimulated Raman Scattering and Transient Absorption Microscopy[J]. Advanced Biosystems, 2017, 1(4): 1700013.
[54] [54] Liao C S, Slipchenko M N, Wang P, et al. Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy[J]. Light Sci Appl, 2015, 4(3): e265.
[55] [55] Zhang C, Huang K C, Rajwa B, et al. Stimulated Raman scattering flow cytometry for label-free single-particle analysis[J]. Optica, 2017, 4(1): 103-109.
[56] [56] Nitta N, Iino T, Isozaki A, et al. Raman image-activated cell sorting[J]. Nat Commun, 2020, 11(1): 3452.
[57] [57] Li H, Cheng Y, Tang H, et al. Imaging Chemical Kinetics of Radical Polymerization with an Ultrafast Coherent Raman Microscope[J]. Adv Sci (Weinh), 2020, 7(10): 1903644.
[58] [58] Bi Y, Yang C, Chen Y, et al. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm[J]. Light Sci Appl, 2018, 7: 81.
[59] [59] Zhuge M, Huang K C, Lee H J, et al. Ultrasensitive Vibrational Imaging of Retinoids by Visible Preresonance Stimulated Raman Scattering Microscopy[J]. Adv Sci (Weinh), 2021, 8(9): 2003136.
[60] [60] Gong L, Wang H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study[J]. Physical Review A, 2014, 90(1): 013818.
[61] [61] Gong L, Wang H. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy[J]. Physical Review A, 2015, 92(2): 023828.
[62] [62] Silva W R, Graefe C T, Frontiera R R. Toward Label-Free Super-Resolution Microscopy[J]. ACS Photonics, 2015, 3(1): 79-86.
[63] [63] Kim D, Choi D S, Kwon J, et al. Selective Suppression of Stimulated Raman Scattering with Another Competing Stimulated Raman Scattering[J]. J Phys Chem Lett, 2017, 8(24): 6118-6123.
[64] [64] Ao J, Fang X, Miao X, et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes[J]. Nat Commun, 2021, 12(1): 3089.
[65] [65] Shou J, Ozeki Y. Photoswitchable stimulated Raman scattering spectroscopy and microscopy[J]. Opt Lett, 2021, 46(9): 2176-2179.
[66] [66] Shou J, Komazawa A, Wachi Y, et al. Super-resolution vibrational imaging based on photoswitchable Raman probe[J]. Sci Adv, 2023, 9(24): eade9118.
[67] [67] Ao J, Fang X, Ma L, et al. Photoswitchable vibrational nanoscopy with sub-100-nm optical resolution[J]. Advanced Photonics, 2023, 5(6): 066001.
[68] [68] Yang Y, Bai X, Hu F. Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control[J]. Nature Communications, 2024, 15(1): 2578.
[69] [69] Jang H, Li Y, Fung A A, et al. Super-resolution SRS microscopy with A-PoD[J]. Nat Methods, 2023, 20(3): 448-458.
[70] [70] Gong L, Lin S, Huang Z. Super-resolution stimulated Raman scattering microscopy enhanced by quantum light and deconvolution[J]. Opt Lett, 2023, 48(24): 6516-6519.
[71] [71] Qian C, Miao K, Lin L E, et al. Super-resolution label-free volumetric vibrational imaging[J]. Nat Commun, 2021, 12(1): 3648.
[72] [72] Shi L, Klimas A, Gallagher B, et al. Super-Resolution Vibrational Imaging Using Expansion Stimulated Raman Scattering Microscopy[J]. Adv Sci (Weinh), 2022, 9(20): e2200315.
[73] [73] Li Y, Shen B, Li S, et al. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences[J]. Advanced Biology, 2021, 5(1): 2000184.
[74] [74] Moester M J B, Zada L, Fokker B, et al. Stimulated Raman scattering microscopy with long wavelengths for improved imaging depth[J]. Journal of Raman Spectroscopy, 2018, 50(9): 1321-1328.
[75] [75] Lin P, Ni H, Li H, et al. Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope[J]. Opt Express, 2020, 28(20): 30210-30221.
[76] [76] Chen X, Zhang C, Lin P, et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography[J]. Nat Commun, 2017, 8: 15117.
[77] [77] Lin P, Li C, Flores-Valle A, et al. Tilt-angle stimulated Raman projection tomography[J]. Opt Express, 2022, 30(20): 37112-37123.
[78] [78] Gong L, Lin S, Huang Z. Stimulated Raman Scattering Tomography Enables Label-Free Volumetric Deep Tissue Imaging[J]. Laser & Photonics Reviews, 2021, 15(9): 2100069.
[79] [79] Li J, Lin P, Tan Y, Cheng J X. Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology[J]. Biomed Opt Express, 2019, 10(8): 4329-4339.
[80] [80] Wei M, Shi L, Shen Y, et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy[J]. Proc Natl Acad Sci U S A, 2019, 116(14): 6608-6617.
[81] [81] Shi L, Wei M, Miao Y, et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing[J]. Nat Biotechnol, 2022, 40(3): 364-373.
[82] [82] Fu D, Xie X S. Reliable cell segmentation based on spectral phasor analysis of hyperspectral stimulated Raman scattering imaging data[J]. Anal Chem, 2014, 86(9): 4115-4119.
[83] [83] Ji M, Orringer D A, Freudiger C W, et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy[J]. Sci Transl Med, 2013, 5(201): 201ra119.
[84] [84] Lu F K, Basu S, Igras V, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy[J]. Proc Natl Acad Sci U S A, 2015, 112(37): 11624-11629.
[85] [85] Pence I J, Kuzma B A, Brinkmann M, et al. Multi-window sparse spectral sampling stimulated Raman scattering microscopy[J]. Biomed Opt Express, 2021, 12(10): 6095-6114.
[86] [86] Tan Y, Lin H, Cheng J X. Profiling single cancer cell metabolism via high-content SRS imaging with chemical sparsity[J]. Sci Adv, 2023, 9(33): eadg6061.
[87] [87] Ji M, Lewis S, Camelo-Piragua S, et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy[J]. Sci Transl Med, 2015, 7(309): 309ra163.
[88] [88] Lu F K, Calligaris D, Olubiyi O I, et al. Label-Free Neurosurgical Pathology with Stimulated Raman Imaging[J]. Cancer Res, 2016, 76(12): 3451-3462.
[89] [89] Bae K, Xin L, Zheng W, et al. Mapping the Intratumoral Heterogeneity in Glioblastomas with Hyperspectral Stimulated Raman Scattering Microscopy[J]. Anal Chem, 2021, 93(4): 2377-2384.
[90] [90] Yang Y F, Chen L C, Ji M B. Stimulated Raman scattering microscopy for rapid brain tumor histology[J]. Journal of Innovative Optical Health Sciences, 2017, 10(5): 1730010.
[91] [91] Eichberg D G, Shah A H, Di L, et al. Stimulated Raman histology for rapid and accurate intraoperative diagnosis of CNS tumors: prospective blinded study[J]. J Neurosurg, 2019, 134(1): 137-143.
[92] [92] Luther E, Matus A, Eichberg D G, et al. Stimulated Raman Histology for Intraoperative Guidance in the Resection of a Recurrent Atypical Spheno-orbital Meningioma: A Case Report and Review of Literature[J]. Cureus, 2019, 11(10): e5905.
[93] [93] Hollon T C, Pandian B, Urias E, et al. Rapid, label-free detection of diffuse glioma recurrence using intraoperative stimulated Raman histology and deep neural networks[J]. Neuro Oncol, 2021, 23(1): 144-155.
[94] [94] Orringer D A, Pandian B, Niknafs Y S, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nat Biomed Eng, 2017, 1: 0027.
[95] [95] Hollon T C, Lewis S, Pandian B, et al. Rapid Intraoperative Diagnosis of Pediatric Brain Tumors Using Stimulated Raman Histology[J]. Cancer Res, 2018, 78(1): 278-289.
[96] [96] Hollon T C, Pandian B, Adapa A R, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nat Med, 2020, 26(1): 52-58.
[97] [97] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[98] [98] Wild C, Weiderpass E, Stewart B W. World cancer report: cancer research for cancer prevention[M]. International Agency for Research on Cancer, 2020.
[99] [99] Shin K S, Laohajaratsang M, Men S, et al. Quantitative chemical imaging of breast calcifications in association with neoplastic processes[J]. Theranostics, 2020, 10(13): 5865-5878.
[100] [100] Yang Y, Yang Y, Liu Z, et al. Microcalcification-Based Tumor Malignancy Evaluation in Fresh Breast Biopsies with Hyperspectral Stimulated Raman Scattering[J]. Analytical Chemistry, 2021, 93(15): 6223-6231.
[101] [101] Yang Y, Liu Z, Huang J, et al. Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning[J]. Theranostics, 2023, 13(4): 1342-1354.
[102] [102] Ni H, Dessai C P, Lin H, et al. High-content stimulated Raman histology of human breast cancer[J]. Theranostics, 2024, 14(4): 1361-1370.
[103] [103] Sarri B, Canonge R, Audier X, et al. Fast stimulated Raman and second harmonic generation imaging for intraoperative gastro-intestinal cancer detection[J]. Sci Rep, 2019, 9(1): 10052.
[104] [104] Sarri B, Poizat F, Heuke S, et al. Stimulated Raman histology: one to one comparison with standard hematoxylin and eosin staining[J]. Biomed Opt Express, 2019, 10(10): 5378-5384.
[105] [105] Liu Z, Su W, Ao J, et al. Instant diagnosis of gastroscopic biopsy via deep-learned single-shot femtosecond stimulated Raman histology[J]. Nat Commun, 2022, 13(1): 4050.
[106] [106] Ao J, Shao X, Liu Z, et al. Stimulated Raman Scattering Microscopy Enables Gleason Scoring of Prostate Core Needle Biopsy by a Convolutional Neural Network[J]. Cancer Res, 2023, 83(4): 641-651.
[107] [107] Yue S, Li J, Lee S-Y, et al. Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness[J]. Cell Metabolism, 2014, 19(3): 393-406.
[108] [108] Zhang B, Xu H, Chen J, et al. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering[J]. Theranostics, 2021, 11(7): 3074-3088.
[109] [109] Xu H, Zhang B, Chen Y, et al. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment[J]. Ann Rheum Dis, 2023, 82(3): 416-427.
[110] [110] Ji M, Arbel M, Zhang L, et al. Label-free imaging of amyloid plaques in Alzheimer's disease with stimulated Raman scattering microscopy[J]. Sci Adv, 2018, 4(11): eaat7715.
[111] [111] Zhang L, Zou X, Huang J, et al. Label-Free Histology and Evaluation of Human Pancreatic Cancer with Coherent Nonlinear Optical Microscopy[J]. Anal Chem, 2021, 93(46): 15550-15558.
[112] [112] Zhang L, Wu Y, Zheng B, et al. Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy[J]. Theranostics, 2019, 9(9): 2541-2554.
[113] [113] Yan S, Cui S, Ke K, et al. Hyperspectral Stimulated Raman Scattering Microscopy Unravels Aberrant Accumulation of Saturated Fat in Human Liver Cancer[J]. Anal Chem, 2018, 90(11): 6362-6366.
[114] [114] Jia H, Liu J, Fang T, et al. The role of altered lipid composition and distribution in liver fibrosis revealed by multimodal nonlinear optical microscopy[J]. Science Advances, 2023, 9(2).
[115] [115] Hoesli R C, Orringer D A, Mchugh J B, Spector M E. Coherent Raman Scattering Microscopy for Evaluation of Head and Neck Carcinoma[J]. Otolaryngol Head Neck Surg, 2017, 157(3): 448-453.
[116] [116] Shin K S, Francis A T, Hill A H, et al. Intraoperative assessment of skull base tumors using stimulated Raman scattering microscopy[J]. Sci Rep, 2019, 9(1): 20392.
[117] [117] Zou F, Zhang L, Zou X, et al. Differential characterization of lumbar spine associated tissue histology with nonlinear optical microscopy[J]. Biomed Opt Express, 2022, 13(1): 474-484.
[118] [118] Tian F, Yang W, Mordes D A, et al. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging[J]. Nature Communications, 2016, 7(1): 13283.
[119] [119] Zhang B, Yao T, Chen Y, et al. Label-Free Delineation of Human Uveal Melanoma Infiltration With Pump-Probe Microscopy[J]. Frontiers in Oncology, 2022, 12: 891282.
[120] [120] Zhang L, Zou X, Zhang B, et al. Label-free imaging of hemoglobin degradation and hemosiderin formation in brain tissues with femtosecond pump-probe microscopy[J]. Theranostics, 2018, 8(15): 4129-4140.
[121] [121] Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy[J]. Nat Methods, 2019, 16(9): 830-842.
[122] [122] Wei L, Yu Y, Shen Y, et al. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy[J]. Proc Natl Acad Sci U S A, 2013, 110(28): 11226-11231.
[123] [123] Hu F, Lamprecht M R, Wei L, et al. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering[J]. Sci Rep, 2016, 6: 39660.
[124] [124] Shi L, Shen Y, Min W. Invited Article: Visualizing protein synthesis in mice with in vivo labeling of deuterated amino acids using vibrational imaging[J]. APL Photonics, 2018, 3(9): 092401.
[125] [125] Shi L, Zheng C, Shen Y, et al. Optical imaging of metabolic dynamics in animals[J]. Nat Commun, 2018, 9(1): 2995.
[126] [126] Wei L, Hu F, Shen Y, et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering[J]. Nat Methods, 2014, 11(4): 410-412.
[127] [127] Hu F, Chen Z, Zhang L, et al. Vibrational Imaging of Glucose Uptake Activity in Live Cells and Tissues by Stimulated Raman Scattering[J]. Angew Chem Int Ed Engl, 2015, 54(34): 9821-9825.
[128] [128] Hu F, Zeng C, Long R, et al. Supermultiplexed optical imaging and barcoding with engineered polyynes[J]. Nat Methods, 2018, 15(3): 194-200.
[129] [129] Hu F, Brucks S D, Lambert T H, et al. Stimulated Raman scattering of polymer nanoparticles for multiplexed live-cell imaging[J]. Chem Commun (Camb), 2017, 53(46): 6187-6190.
[130] [130] Jin Q, Fan X, Chen C, et al. Multicolor Raman Beads for Multiplexed Tumor Cell and Tissue Imaging and in Vivo Tumor Spectral Detection[J]. Anal Chem, 2019, 91(6): 3784-3789.
[131] [131] Wei M, Qian N, Gao X, et al. Single-particle imaging of nanomedicine entering the brain[J]. Proc Natl Acad Sci U S A, 2024, 121(5): e2309811121.
[132] [132] Manifold B, Thomas E, Francis A T, et al. Denoising of stimulated Raman scattering microscopy images via deep learning[J]. Biomed Opt Express, 2019, 10(8): 3860-3874.
[133] [133] Abdolghader P, Ridsdale A, Grammatikopoulos T, et al. Unsupervised hyperspectral stimulated Raman microscopy image enhancement: denoising and segmentation via one-shot deep learning[J]. Opt Express, 2021, 29(21): 34205-34219.
[134] [134] Zhang J, Zhao J, Lin H, et al. High-Speed Chemical Imaging by Dense-Net Learning of Femtosecond Stimulated Raman Scattering[J]. J Phys Chem Lett, 2020, 11(20): 8573-8578.
[135] [135] Falahkheirkhah K, Mukherjee S S, Gupta S, et al. Accelerating Cancer Histopathology Workflows with Chemical Imaging and Machine Learning[J]. Cancer Res Commun, 2023, 3(9): 1875-1887.
[136] [136] Shen B, Li Z, Pan Y, et al. Noninvasive Nonlinear Optical Computational Histology[J]. Adv Sci (Weinh), 2023: e2308630.
[137] [137] Manifold B, Men S, Hu R, Fu D. A Versatile Deep Learning Architecture for Classification and Label-Free Prediction of Hyperspectral Images[J]. Nat Mach Intell, 2021, 3(4): 306-315.
[138] [138] Liu Z, Chen L, Cheng H, et al. Virtual formalin-fixed and paraffin-embedded staining of fresh brain tissue via stimulated Raman CycleGAN model[J]. Science Advances, 2024, 10(13): eadn 3426.
[139] [139] Nose K, Ozeki Y, Kishi T, et al. Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique[J]. Opt Express, 2012, 20(13): 13958-13965.
[140] [140] Freudiger C W, Yang W, Holtom G R, et al. Stimulated Raman Scattering Microscopy with a Robust Fibre Laser Source[J]. Nat Photonics, 2014, 8(2): 153-159.
[141] [141] Karpf S, Eibl M, Wieser W, et al. A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy[J]. Nat Commun, 2015, 6: 6784.
[142] [142] Liao C-S, Wang P, Huang C Y, et al. In Vivo and in Situ Spectroscopic Imaging by a Handheld Stimulated Raman Scattering Microscope[J]. ACS Photonics, 2017, 5(3): 947-954.
[143] [143] Saar B G, Johnston R S, Freudiger C W, et al. Coherent Raman scanning fiber endoscopy[J]. Optics Letters, 2011, 36(13): 2396.
[144] [144] Myaing M T, Macdonald D J, Li X. Fiber-optic scanning two-photon fluorescence endoscope[J]. Optics Letters, 2006, 31(8): 1076-1078.
Get Citation
Copy Citation Text
MA Liyang, LUO Kuan, LI Jiaying, LIU Zhijie, JI Minbiao. Stimulated Raman microscopy and its application in stain-free histopathology[J]. The Journal of Light Scattering, 2024, 36(3): 343
Category:
Received: Jun. 12, 2024
Accepted: Nov. 21, 2024
Published Online: Nov. 21, 2024
The Author Email: Minbiao JI (Minbiaoj@fudan.edu.cn)