Acta Laser Biology Sinica, Volume. 30, Issue 4, 316(2021)
Detection of Floating Green Algae Based on UAV RGB Optical Camera
[1] [1] GOWER J, KING S, STATHAM S, et al. The Malaspina Dragon: a newly-discovered pattern of the early spring bloom in the Strait of Georgia, British Columbia, Canada[J]. Progress in Oceanography, 2013, 115: 181-188.
[2] [2] XING Q G, TOSI L, BRAGA F, et al. Interpreting the progressive eutrophication behind the world’s largest macroalgal blooms with water quality and ocean color data[J]. Natural Hazards, 2015, 78(1): 7-21.
[3] [3] CUI T W, ZHANG J, SUN L E, et al. Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation[J]. International Journal of Remote Sensing, 2012, 33(17/18): 5513-5527.
[4] [4] XIAO Y, ZHANG J, CUI T W. High-precision extraction of nearshore green tides using satellite remote sensing data of the Yellow Sea, China[J]. International Journal of Remote Sensing, 2017, 38(5/6): 1626-1641.
[5] [5] XING Q G, WU L L, TIAN L Q, et al. Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign[J]. Marine Pollution Bulletin, 2018, 133: 150-156.
[6] [6] XING Q G, HU C M. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: application of a virtual baseline reflectance height technique[J]. Remote Sensing of Environment, 2016, 178: 113-126.
[7] [7] XU Q, ZHANG H, CHENG Y, et al. Monitoring and tracking the green tide in the Yellow Sea with satellite imagery and trajectory model[J].?IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 5172-5181.
[8] [8] GOWER J, YOUNG E, KING S. Satellite images suggest a new Sargassum source region in 2011[J]. Remote Sensing Letters, 2013, 4(8): 764-773.
[9] [9] HU C M, FENG L, HARDY R F, et al. Spectral and spatial requirements of remote measurements of pelagic Sargassum macroalgae[J]. Remote Sensing of Environment, 2015, 167: 229-246.
[10] [10] XING Q G, GUO R H, WU L L, et al. High-resolution satellite observations of a new hazard of golden tides caused by floating Sargassum in winter in the Yellow Sea[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1815-1819.
[11] [11] XING Q G, ZHENG X Y, SHI P, et al. Monitoring “green tide” in the Yellow Sea and the East China Sea using multi-temporal and multi-source remote sensing images[J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1644-1647.
[12] [12] YUE J B, YANG G J, TIAN Q J, et al. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 226-244.
[13] [13] CHENG K H, CHAN S N, LEE J H W. Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs)[J]. Marine Pollution Bulletin, 2020, 152: 110889.
[14] [14] LAURENS L, WOLFRUM E J. High-throughput quantitative biochemical characterization of algal biomass by NIR spectroscopy; multiple linear regression and multivariate linear regression analysis[J]. Journal of Agricultural & Food Chemistry, 2013, 61(50):12307-12314.
[15] [15] HU C. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009, 113(10): 2118-2129.
[16] [16] SON Y B, MIN J E, RYU J H. Detecting massive green algae (Ulva prolifera) blooms in the Yellow Sea and East China Sea using geostationary ocean color imager (GOCI) data[J]. Ocean Science Journal, 2012, 47(3): 359-375.
[17] [17] ZHANG X L, ZHANG F, QI Y X, et al. New research methods for vegetation information extraction based on visible light remote sensing images from an unmanned aerial vehicle (UAV)[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78: 215-226.
[18] [18] KAZMI W, GARCIA-RUIZ F J, NIELSEN J, et al. Detecting creeping thistle in sugar beet fields using vegetation indices[J]. Computers and Electronics in Agriculture, 2015, 112: 10-19.
[19] [19] LU J S, CHENG D L, GENG C M, et al. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize[J]. Biosystems Engineering, 2021, 202: 42-54.
[20] [20] ZHANG Y C, MA R H, HU M Q, et al. Combining citizen science and land use data to identify drivers of eutrophication in the Huangpu River system[J]. Science of the Total Environment, 2017, 584: 651-664.
[21] [21] YAN Q S, ZHU Y, ZHOU Y L, et al. Enhancing image visuality by multi-exposure fusion[J]. Pattern Recognition Letters, 2019, 127: 66-75.
[22] [22] XU Y D, SUN B B. Color-compensated multi-scale exposure fusion based on physical features[J]. Optik-International Journal for Light and Electron Optics, 2020, 223: 165494.
[23] [23] CLEDAT E, RUFENER M, CUCCI D A. Compensating over- and underexposure in optical target pose determination[J]. Pattern Recognition, 2021, 116: 107930.
[24] [24] HU S, YANG H, ZHANG J H, et al. Small-scale early aggregation of green tide macroalgae observed on the Subei Bank, Yellow Sea[J]. Marine Pollution Bulletin, 2014, 81(1): 166-173.
[25] [25] WANG Z L, XIAO J, FAN S L, et al. Who made the world’s largest green tide in China?—an integrated study on the initiation and early development of the green tide in Yellow Sea[J]. Limnology and Oceanography, 2015, 60(4): 1105-1117.
Get Citation
Copy Citation Text
YANG Guoying, XING Qianguo, ZHAO Chunhui, MENG Miaomiao, LI Jinghu. Detection of Floating Green Algae Based on UAV RGB Optical Camera[J]. Acta Laser Biology Sinica, 2021, 30(4): 316
Category:
Received: Apr. 23, 2021
Accepted: --
Published Online: Sep. 12, 2021
The Author Email: Qianguo XING (qgxing@yic.ac.cn)