Electro-Optic Technology Application, Volume. 39, Issue 5, 52(2024)

Simulation Research of Graphene Hybrid EIT-like Terahertz Metasurfaces

SUN Kai1, ZHANG Jingrui2, YANG Haibo1, and LI Yuhai1
Author Affiliations
  • 1National Key Laboratory of Electromagnetic Space Security, Tianjin, China
  • 2China Institute of Marine Technology & Economy, Beijing, China
  • show less
    References(17)

    [1] [1] COOPER K B, DENGLER R J, LLOMBART N, et al. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169-182.

    [2] [2] GU S, LI C, GAO X, et al. Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3877-3885.

    [4] [4] YANG X, ZHAO X, YANG K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10): 810-824.

    [5] [5] QIU Q, HUANG Z. Photodetectors of 2D materials from ultraviolet to terahertz waves[J]. Advanced Materials, 2021, 33: 2008126.

    [6] [6] SHIN H, LIM M, PARK K, et al. Invisible security printing on photoresist polymer readable by terahertz spectroscopy[J]. Sensors, 2017, 17(12): 2825.

    [7] [7] CHIANG Y, YANG C, YANG Y, et al. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial[J]. Applied Physics Letters, 2011, 99(19): 191909.

    [8] [8] FAN K, SUEN J Y, LIU X, et al. All-dielectric metasurface absorbers for uncooled terahertz imaging[J]. Optica, 2017, 4(6): 601.

    [9] [9] HOU X, CHEN X, LI T, et al. Highly sensitive terahertz metamaterial biosensor for bovine serum albumin (BSA) detection[J]. Optical Materials Express, 2021, 11(7): 2268.

    [10] [10] CONG X, ZHANG L, LI J, et al. Integration of ultrathin metasurfaces with a lens for efficient polarization division multiplexing[J]. Advanced Optical Materials, 2019, 7(12): 1900116.

    [11] [11] YAO B, ZANG X, ZHU Y, et al. Spin-decoupled metalens with intensity-tunable multiple focal points[J]. Photonics Research, 2021, 9(6): 1019.

    [12] [12] HARRIS S. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

    [13] [13] LI J, LI J, YANG Y, et al. Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging[J]. Carbon, 2020, 163: 34-42.

    [14] [14] GUSYNIN V P, SHARAPOV S G, CARBOTTE J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 2007, 19(2): 26222.

    [15] [15] XIAO S, WANG T, LIU T, et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 2018, 126: 271-278.

    [17] [17] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, et al. Doping graphene with metal contacts[J]. Physical Review Letters, 2008, 101(2): 26803.

    [18] [18] ZHANG Z, HUANG H, YANG X, et al. Tailoring electronic properties of graphene by - stacking with aromatic molecules[J]. The Journal of Physical Chemistry Letters, 2011, 2(22): 2897-2905.

    [20] [20] YANG Y, LI J, LI J, et al. Plasmon-induced reflection metasurface with dual-mode modulation for multi-functional THz devices[J]. Optics and Lasers in Engineering, 2020, 127(4): 105969-1-105969-7.

    Tools

    Get Citation

    Copy Citation Text

    SUN Kai, ZHANG Jingrui, YANG Haibo, LI Yuhai. Simulation Research of Graphene Hybrid EIT-like Terahertz Metasurfaces[J]. Electro-Optic Technology Application, 2024, 39(5): 52

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 9, 2024

    Accepted: Dec. 20, 2024

    Published Online: Dec. 20, 2024

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics