Acta Optica Sinica, Volume. 36, Issue 8, 801001(2016)
Stochastic Characteristic Analysis of Time Series of Extinction Coefficient in Chengdu
[1] [1] Yuan C S, Lee C G, Liu S H, et al. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols[J]. Atmospheric Research, 2006, 82(3-4): 663-679.
[2] [2] Gong Chunwen, Li Xuebin, Li Jianyu, et al. New method of aerosol extinction coefficient mearsurement[J]. Acta Optica Sinica, 2014, 34(1): 0101001.
[3] [3] Bo Guangyu, Liu Dong, Wu Decheng, et al. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days[J]. Chinese J Lasers, 2014, 41(1): 0113001.
[4] [4] Chen Linghong, Jiang Yiqi, Sun Yangyang, et al. Analysis of aborption and scattering properties of water host haze droplet with insoluble solid inclusion[J]. Chinese J Lasers, 2015, 42(3): 0308001.
[5] [5] Pitchford M, Malm W, Schichtel B, et al. Revised algorithm for estimating light extinction from IMPROVE particle speciation data[J]. J Air Waste Manag Assoc, 2007, 57(11): 1326-1336.
[6] [6] Yan Guoliang, Han Yongxiang, Zhang Xiangzhi, et al. Analysis of a haze event in Nanjing with micro-pulse lidar measurements[J]. China Environment Science, 2014, 34(7): 1667-1672.
[9] [9] Li Xuebin, Xu Qingshan, Wei Heli, et al. Study on relationship between extinction coefficient and mass concentration[J]. Acta Optica Sinica, 2008, 29(9): 1655-1658.
[11] [11] Sloane C S, Wolff G T. Prediction of ambient light scattering using a physical model responsive to relative humidity: Validation with measurements from Detroit[J]. Atmospheric Environment(1967), 1985, 19(4): 669-680.
[12] [12] Tang I N. Chemical and size effects of hygroscopic aerosols on light scattering coefficients[J]. J Geophys Res, 1996, 101(D14): 19245-19250.
[13] [13] Zhang Y H, Chan C K. Understanding the hygroscopic properties of supersaturated droplets of metal and ammonium sulfate solutions using Raman spectroscopy[J]. J Phys Chem A, 2002, 106(2): 285-292.
[14] [14] Sjogren S, Gysel M, Weingartner E, et al. Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures[J]. J Aerosol Sci, 2007, 38(2): 157-171.
[15] [15] Pueschel R F, Noll K E. Visibility and aerosol size frequency distribution[J]. Journal of Applied Meteorology, 1967, 6(6): 1045-1052.
[16] [16] Pandis S N, Harley R A, Cass G R, et al. Secondary organic aerosol formation and transport[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(13): 2269-2282.
[17] [17] Wu Dui. Hazy weather research in China in the last decade: A review[J]. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269.
[18] [18] Ye Xingnan, Chen Jianmin. Advances in the mechanism of secondary fine particulate matters formation[J]. Progress in Chemistry, 2009, 21(2-3): 288-296.
[19] [19] Covert D S, Charlson R J, Ahlquist N C. A study of the relationship of chemical composition and humidity to light scattering by aerosols[J]. J Appl Meteorol, 1972, 11(6): 968-976.
[20] [20] Pan Xiaole. Observation study of atmospheric aerosol scattering characteristics as a function of relative humidity[D]. Beijing: Chinese Academy of Meteorogical Sciences, 2007.
[21] [21] Ye Xingnan, Chen Jianmin. Haze and hygroscopic growth[J]. Chinese J Nature, 2013, 35(5): 337-341.
[22] [22] Carrico C M, Kus P, Rood M J, et al. Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity[J]. J Geophys Res, 2003, 108(D23): 2015-2023.
[23] [23] Shi Z, Zhang D, Hayashi M, et al. Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles[J]. Atmospheric Environment, 2008, 42(4): 822-827.
[24] [24] Saxena P, Hildemann L M, McMurry P H, et al. Organics alter hygroscopic behavior of atmospheric particles[J]. J Geophys Res, 1995, 100(D9): 18755-18770.
[25] [25] Airborne Particles Expert Group. Source apportionment of airborne particulate matter in the United Kingdom[R]. London: Department for Environment, Food & Rural Affairs, 1999-01-28.
[26] [26] Song Yu, Tang Xiaoyan, Fang Chen, et al. Source apportionment on fine in Beijing[J]. Environmental Science, 2002, 23(6): 11-16.
[27] [27] Shi G L, Li X, Feng Y C, et al. Combined source apportionment, using positive matrix factorization-chemical mass balance and principal component analysis/multiple linear regression-chemical mass balance models[J]. Atmospheric Environment, 2009, 43(18): 2929-2937.
[28] [28] Wang Shulan, Chai Fahe, Zhou Laidong, et al. Source analysis of air inhalational particles in Chengdu city[J]. Scientia Geographica Sinina, 2006, 26(6): 717-721.
[30] [30] Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data[J]. Physical Review A, 1986, 34(3): 2427-2432.
[31] [31] Ding Jing, Wang Wensheng, Zhao Yonglong. Characteristics of daily flow variation in the Yangtze River, 1, optimum determination of delay time for reconstruction of a phase space[J]. Advances in Water Science, 2003, 14(4): 407-411.
[32] [32] Grassberger P. An optimized box-assisted algorithm for fractal dimensions[J]. Physics Letters A, 1990, 148(1-2): 63-68.
[33] [33] Hu Xiao, Chen Yongjun, Zeng Min, et al. A new method to choose optimal delay time for phase space reconstruction[J]. Journal of University of Electronic Science and Technology of China, 2000, 29(3): 282-285.
[34] [34] Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1-2): 43-50.
[35] [35] Schreiber T. Interdisciplinary application of nonlinear time series methods[J]. Physics Reports, 1999, 308(1): 1-64.
[36] [36] Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series: The method of surrogate data[J]. Physica D: Nonlinear Phenomena, 1992, 58(1-4): 77-94.
[37] [37] Ma Junhai, Liu Lixia. Testing for nonlinearity in time series of monthly rainfall in Yunnan[J]. Journal of Systems Engineering, 2007, 22(6): 561-567.
Get Citation
Copy Citation Text
Sun Huanhuan, Ni Changjian, Cui Lei, Wang Chao. Stochastic Characteristic Analysis of Time Series of Extinction Coefficient in Chengdu[J]. Acta Optica Sinica, 2016, 36(8): 801001
Category: Atmospheric Optics and Oceanic Optics
Received: Jan. 25, 2016
Accepted: --
Published Online: Aug. 18, 2016
The Author Email: Sun Huanhuan (283087789@qq.com)