OPTICS & OPTOELECTRONIC TECHNOLOGY, Volume. 19, Issue 3, 75(2021)
Reconstruction of Chaotic Grayscale Image Encryption Based on Deep Learning
[1] [1] Guan Z H, Huang F, Guan W. Chaos-based image encryption algorithm[J]. Physics Letters A, 2005, 346(1-3):153-157.
[2] [2] Gao H, Zhang Y, Liang S, et al. A new chaotic algorithm for image encryption[J]. Chaos Solitons & Fractals, 2006, 29(2): 393-399.
[3] [3] Pareek N K, Patidar V, Sud K K. Image encryption using chaotic logistic map[J]. Image and Vision Computing, 2006, 24(9): 926-934.
[4] [4] Behnia S, Akhshani A, Ahadpour S, et al. A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps[J]. Physics Letters A, 2007, 366(4-5): 391-396.
[5] [5] Zhang Y, Li C, Li Q, et al. Breaking a chaotic image encryption algorithm based on perceptron model[J]. Nonlinear Dynamics, 2011, 69(3): 1091-1096.
[6] [6] Cokal C, Solak E. Cryptanalysis of a chaos-based image encryption algorithm[J]. Physics Letters A, 2009, 373(15): 1357-1360.
[7] [7] Hitaj B, Gasti P, Ateniese G, et al. PassGAN: A deep learning approach for password guessing[J]. arXiv preprint arXiv, 2019, 1709: 00440.
[8] [8] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436.
[9] [9] Ouyang W, Zeng X, Wang X, et al. DeepID-Net: Deformable deep convolutional neural networks for object detection[J]. arXiv preprint arXiv, 2014, 1412: 5661.
[10] [10] Krizhevsky, Alex, Sutskever, et al. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[11] [11] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
[12] [12] Chen W B, Zhang X. Image encryption algorithm based on Henon chaotic system[C]. 2009 International Conference on Image Analysis and Signal Processing, 2009: 94-97.
[13] [13] Wang X, Wang M. A hyperchaos generated from Lorenz system[J]. Physica A Statal Mechanics & Its Applications, 2008, 387(14): 3751-3758.
[14] [14] Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip connections in biomedical image segmentation[J]. arXiv preprint arXiv, 2016, 1608: 04117.
[15] [15] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), 2011: 315-323.
[16] [16] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv, 2015, 1502: 03167.
[17] [17] Dong C, Loy C C, He K, et al. Learning a deep convolutional network for image super-resolution[C]. European Conference on Computer Vision, 2014: 184-199.
[18] [18] P D, Kingma, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv: 1412.6980, 2015.
[19] [19] Horé A, Ziou D. Image quality metrics: PSNR vs. SSIM[C]. 2010 20th International Conference on Pattern Recognition, 2010: 2366-2369.
[20] [20] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment : From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
Get Citation
Copy Citation Text
XU Zhao, ZHOU Xin, BAI Xing, LI Cong, CHEN Jie, NI Yang. Reconstruction of Chaotic Grayscale Image Encryption Based on Deep Learning[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2021, 19(3): 75
Category:
Received: Dec. 8, 2020
Accepted: --
Published Online: Aug. 23, 2021
The Author Email:
CSTR:32186.14.