Laser & Optoelectronics Progress, Volume. 59, Issue 2, 0210013(2022)
Adaptive Image Segmentation Based on Region Information Coupling
Fig. 1. Original image and preprocessed image. (a) Original image; (b) prepropcessed image
Fig. 2. Change curve of the weight function. (a) Weight function curve; (b) influence of parameter p on the weight function; (c) influence of parameter k on the weight function
Fig. 3. Segmentation results of our model. (a) Blood vessel image; (b) synthetic image
Fig. 4. Segmentation results of different initial contours. (a) Initial contour; (b) segmentation result of 10 iterations; (c) segmentation result of 20 iterations
Fig. 5. Segmentation result of our model on the synthetic image. (a) Image 1; (b) image 2; (c) image 3
Fig. 6. Segmentation results of blood vessel images with different Gaussian noise. (a) Noisy image; (b) segmentation result
Fig. 7. Segmentation results of different models. (a) Initial contour; (b) LBF model; (c) model in Ref. [21]; (d) our model
Fig. 8. Segmentation results of natural images. (a) Original image; (b) segmentation result
|
|
|
Get Citation
Copy Citation Text
Gengsheng Li, Guojun Liu, Wentao Ma. Adaptive Image Segmentation Based on Region Information Coupling[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210013
Category: Image Processing
Received: Jan. 12, 2021
Accepted: Mar. 15, 2021
Published Online: Dec. 23, 2021
The Author Email: Guojun Liu (liugj@nux.edu.cn)