Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817014(2025)

Progress and Challenges of NIR-II Fluorescent Probes in the Detection of Mitochondria-Associated Markers (Invited)

Qinghui Wang1, Chenglong Zhang2, Kai Li1, Rui Xin1、*, Liangcan He1、**, and Shaoqin Liu1
Author Affiliations
  • 1Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, Heilongjiang , China
  • 2College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang , China
  • show less
    References(54)

    [1] Murphy M P. How mitochondria produce reactive oxygen species[J]. Biochemical Journal, 417, 1-13(2009).

    [2] Martinez-Vicente M. Neuronal mitophagy in neurodegenerative diseases[J]. Frontiers in Molecular Neuroscience, 10, 64(2017).

    [3] MacLeod K F. Mitophagy and mitochondrial dysfunction in cancer[J]. Annual Review of Cancer Biology, 4, 41-60(2020).

    [4] Javadov S, Kozlov A V, Camara A K S. Mitochondria in health and diseases[J]. Cells, 9, 1177(2020).

    [5] Cen X F, Zhang M K, Zhou M X et al. Mitophagy regulates neurodegenerative diseases[J]. Cells, 10, 1876(2021).

    [6] Lin M T, Beal M F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases[J]. Nature, 443, 787-795(2006).

    [7] Antico O, Thompson P W, Hertz N T et al. Targeting mitophagy in neurodegenerative diseases[J]. Nature Reviews Drug Discovery, 24, 276-299(2025).

    [8] Guan D Q, Liang C M, Zheng D Y et al. The role of mitochondrial remodeling in neurodegenerative diseases[J]. Neurochemistry International, 183, 105927(2025).

    [9] Porporato P E, Filigheddu N, Pedro J M B et al. Mitochondrial metabolism and cancer[J]. Cell Research, 28, 265-280(2018).

    [10] Wallace D C. Mitochondria and cancer[J]. Nature Reviews Cancer, 12, 685-698(2012).

    [11] Li M X, Wu Y B, He C F et al. Mitochondria-targeting small-molecule NIR-II fluorescent probes for imaging and treatment of tumor[J]. Advanced Therapeutics, 6, 2300151(2023).

    [12] Forbes J M, Thorburn D R. Mitochondrial dysfunction in diabetic kidney disease[J]. Nature Reviews Nephrology, 14, 291-312(2018).

    [13] Sangwung P, Petersen K F, Shulman G I et al. Mitochondrial dysfunction, insulin resistance, and potential genetic implications: potential role of alterations in mitochondrial function in the pathogenesis of insulin resistance and type 2 diabetes[J]. Endocrinology, 161, 1-10(2020).

    [14] Hou X S, Wang H S, Mugaka B P et al. Mitochondria: promising organelle targets for cancer diagnosis and treatment[J]. Biomaterials Science, 6, 2786-2797(2018).

    [15] Li C Y, Chen G C, Zhang Y J et al. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications[J]. Journal of the American Chemical Society, 142, 14789-14804(2020).

    [16] Sevick-Muraca E M. Translation of near-infrared fluorescence imaging technologies: emerging clinical applications[J]. Annual Review of Medicine, 63, 217-231(2012).

    [17] Ji Y Y, Jones C, Baek Y et al. Near-infrared fluorescence imaging in immunotherapy[J]. Advanced Drug Delivery Reviews, 167, 121-134(2020).

    [22] Tang Y F, Pei F, Lu X M et al. Recent advances on activatable NIR-II fluorescence probes for biomedical imaging[J]. Advanced Optical Materials, 7, 1900917(2019).

    [23] Owens E A, Lee S, Choi J et al. NIR fluorescent small molecules for intraoperative imaging[J]. WIREs Nanomedicine and Nanobiotechnology, 7, 828-838(2015).

    [24] Schmidt E L, Ou Z H, Ximendes E et al. Near-infrared II fluorescence imaging[J]. Nature Reviews Methods Primers, 4, 23(2024).

    [26] Zhao Q, Tang S J, Zhong J C et al. Rational design of semiconducting oligomer for third harmonic generation bioimaging of ultradeep brain imaging with NIR-IIb excitation[J]. Advanced Materials, 37, e2417085(2025).

    [27] Valko M, Leibfritz D, Moncol J et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 39, 44-84(2007).

    [28] Zorov D B, Juhaszova M, Sollott S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiological Reviews, 94, 909-950(2014).

    [29] Han X Y, Wang R, Song X Y et al. A mitochondrial-targeting near-infrared fluorescent probe for bioimaging and evaluating endogenous superoxide anion changes during ischemia/reperfusion injury[J]. Biomaterials, 156, 134-146(2018).

    [30] Zhang Y, Liu D F, Chen W W et al. Microenvironment-activatable probe for precise NIR-II monitoring and synergistic immunotherapy in rheumatoid arthritis[J]. Advanced Materials, 36, e2409661(2024).

    [31] Tang Y F, Li Y Y, He C X et al. NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo[J]. Nature Communications, 16, 278(2025).

    [33] Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition[J]. Physiological Reviews, 79, 1127-1155(1999).

    [34] Zorova L D, Popkov V A, Plotnikov E Y et al. Mitochondrial membrane potential[J]. Analytical Biochemistry, 552, 50-59(2018).

    [35] Liu X J, Wang L L, Bing T et al. A mitochondria-targeted ratiometric fluorescent pH probe[J]. ACS Applied Bio Materials, 2, 1368-1375(2019).

    [36] Zhao M Y, Wang J B, Lei Z H et al. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization[J]. Angewandte Chemie (International Ed), 60, 5091-5095(2021).

    [37] Ci Q Q, Wang Y Y, Wu B et al. Fe-doped carbon dots as NIR-II fluorescence probe for in vivo gastric imaging and pH detection[J]. Advanced Science, 10, e2206271(2023).

    [38] Hu Z, Li R H, Zhang X et al. A pH-responsive NIR fluorescent probe for precise cancer phototheranostics[J]. Sensors and Actuators B: Chemical, 440, 137877(2025).

    [39] Bratic I, Trifunovic A. Mitochondrial energy metabolism and ageing[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797, 961-967(2010).

    [40] Ji W H, Tang X, Du W et al. Optical/electrochemical methods for detecting mitochondrial energy metabolism[J]. Chemical Society Reviews, 51, 71-127(2022).

    [41] Lu L F, Li B H, Ding S W et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing[J]. Nature Communications, 11, 4192(2020).

    [42] Ren T B, Wang Z Y, Xiang Z et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging[J]. Angewandte Chemie (International Ed), 60, 800-805(2021).

    [43] Liu Y Y, Zhang L, Chen Y et al. A reversible NIR-II ratiometric fluorescent probe for real-time in vivo ATP detection[J]. Advanced Optical Materials, 11, 2301144(2023).

    [44] Qiu Q M, Sun S C, Yuan H et al. Second near-infrared fluorescent Metal–Organic framework sensors for in vivo extracellular adenosine triphosphate monitoring[J]. Biosensors and Bioelectronics, 251, 116114(2024).

    [45] Arachchige D L, Dwivedi S K, Waters M et al. Sensitive monitoring of NAD(P)H levels within cancer cells using mitochondria-targeted near-infrared cyanine dyes with optimized electron-withdrawing acceptors[J]. Journal of Materials Chemistry. B, 12, 448-465(2024).

    [46] Ma K Q, Yang H, Wu X K et al. An activatable NIR fluorescent probe for NAD(P)H and its application to the real-time monitoring of p53 abnormalities in vivo[J]. Angewandte Chemie (International Ed), 62, e202301518(2023).

    [47] Lanquaye H, Dwivedi S K, Li X Z et al. A rhodamine-based ratiometric fluorescent sensor for dual-channel visible and near-infrared emission detection of NAD(P)H in living cells and fruit fly larvae[J]. ACS Applied Bio Materials, 8, 1707-1719(2025).

    [49] Li H, Wang X, Li X L et al. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging[J]. Chemistry of Materials, 32, 3365-3375(2020).

    [50] Ni H W, Qian J. Clinical research progress on the fluorescence imaging in the second near-infrared window[J]. Journal of Infrared and Millimeter Waves, 42, 896-906(2023).

    [51] Wu J, Qu S N. Research progress on photothermal property of deep red to near-infrared carbon dots[J]. Chinese Journal of Luminescence, 45, 11-24(2024).

    [52] Liao W, Liu L, Luo H Y et al. Near-Infrared II ratiometric photoacoustic imaging of copper ions in Alzheimer’s disease mice by using biomineralized nanoprobes[J]. Chemical Engineering Journal, 504, 158678(2025).

    [53] Liu X, Shi B, Gao Y et al. Ultrabright near-infrared fluorescent DNA frameworks for near-single-cell cancer imaging[J]. Nature Photonics, 19, 79-88(2024).

    [54] Zhu Y, Wu P, Liu S Y et al. Electron-withdrawing substituents allow boosted NIR-II fluorescence in J-type aggregates for bioimaging and information encryption[J]. Angewandte Chemie (International Ed), 62, e202313166(2023).

    Tools

    Get Citation

    Copy Citation Text

    Qinghui Wang, Chenglong Zhang, Kai Li, Rui Xin, Liangcan He, Shaoqin Liu. Progress and Challenges of NIR-II Fluorescent Probes in the Detection of Mitochondria-Associated Markers (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: May. 16, 2025

    Accepted: Aug. 6, 2025

    Published Online: Sep. 12, 2025

    The Author Email: Rui Xin (xinrui0906@hit.edu.cn), Liangcan He (liangcanhe@hit.edu.cn)

    DOI:10.3788/LOP251239

    CSTR:32186.14.LOP251239

    Topics