Journal of Synthetic Crystals, Volume. 51, Issue 3, 385(2022)
Process Control and Optimization of Ingot Crystalline Silicon Growth Using Neural Network and Genetic Algorithm
[2] [2] MIYAZAWA H, LIU L J, KAKIMOTO K. Numerical analysis of influence of crucible shape on interface shape in a unidirectional solidification process[J]. Journal of Crystal Growth, 2008, 310(6): 1142-1147.
[3] [3] MA X, ZHENG L L, ZHANG H, et al. Thermal system design and optimization of an industrial silicon directional solidification system[J]. Journal of Crystal Growth, 2011, 318(1): 288-292.
[4] [4] MA W C, ZHONG G X, SUN L, et al. Influence of an insulation partition on a seeded directional solidification process for quasi-single crystalline silicon ingot for high-efficiency solar cells[J]. Solar Energy Materials and Solar Cells, 2012, 100: 231-238.
[5] [5] QI X F, ZHAO W H, LIU L J, et al. Optimization via simulation of a seeded directional solidification process for quasi-single crystalline silicon ingots by insulation partition design[J]. Journal of Crystal Growth, 2014, 398: 5-12.
[6] [6] WEI J A, ZHANG H, ZHENG L L, et al. Modeling and improvement of silicon ingot directional solidification for industrial production systems[J]. Solar Energy Materials and Solar Cells, 2009, 93(9): 1531-1539.
[7] [7] LI Z Y, LIU L J, ZHANG Y F, et al. Preservation of seed crystals in feedstock melting for cast quasi-single crystalline silicon ingots[J]. International Journal of Photoenergy, 2013, 2013: 670315.
[8] [8] FHNER T, JUNG T. Use of genetic algorithms for the development and optimization of crystal growth processes[J]. Journal of Crystal Growth, 2004, 266(1/2/3): 229-238.
[9] [9] SU J, CHEN X J, LI Y, et al. A niching genetic algorithm applied to optimize a SiC-bulk crystal growth system[J]. Journal of Crystal Growth, 2017, 468: 914-918.
[10] [10] DANG Y F, LIU L J, LI Z Y. Optimization of the controlling recipe in quasi-single crystalline silicon growth using artificial neural network and genetic algorithm[J]. Journal of Crystal Growth, 2019, 522: 195-203.
[11] [11] ASADIAN M, SEYEDEIN S H, ABOUTALEBI M R, et al. Optimization of the parameters affecting the shape and position of crystal-melt interface in YAG single crystal growth[J]. Journal of Crystal Growth, 2009, 311(2): 342-348.
[12] [12] DROPKA N, HOLENA M. Optimization of magnetically driven directional solidification of silicon using artificial neural networks and Gaussian process models[J]. Journal of Crystal Growth, 2017, 471: 53-61.
[13] [13] TSUNOOKA Y, KOKUBO N, HATASA G, et al. High-speed prediction of computational fluid dynamics simulation in crystal growth[J]. CrystEngComm, 2018, 20(41): 6546-6550.
[14] [14] QI X F, MA W C, DANG Y F, et al. Optimization of the melt/crystal interface shape and oxygen concentration during the Czochralski silicon crystal growth process using an artificial neural network and a genetic algorithm[J]. Journal of Crystal Growth, 2020, 548: 125828.
[15] [15] DANG Y F, ZHU C, IKUMI M, et al. Adaptive process control for crystal growth using machine learning for high-speed prediction: application to SiC solution growth[J]. CrystEngComm, 2021, 23(9): 1982-1990.
[16] [16] YU W C, ZHU C, TSUNOOKA Y, et al. Geometrical design of a crystal growth system guided by a machine learning algorithm[J]. CrystEngComm, 2021, 23(14): 2695-2702.
[20] [20] KINGMA D, BA J. Adam: A method for stochastic optimization[J]. Computer Science, 2014.
[21] [21] IOFFE S, SZEGEDY C. Batch Normalization: Accelerating deep network training by reducing internal covariate shift[J]. JMLR.org, 2015.
Get Citation
Copy Citation Text
HAO Peiyao, ZHU Jinwei, LIAO Jilong, ZHENG Lili, ZHANG Hui. Process Control and Optimization of Ingot Crystalline Silicon Growth Using Neural Network and Genetic Algorithm[J]. Journal of Synthetic Crystals, 2022, 51(3): 385
Category:
Received: Jan. 4, 2022
Accepted: --
Published Online: Apr. 21, 2022
The Author Email: Peiyao HAO (hpy20@mails.tsinghua.edu.cn)
CSTR:32186.14.