Infrared Technology, Volume. 46, Issue 7, 791(2024)
Global-Local Attention-Guided Reconstruction Network for Infrared Image
[1] [1] HU Demin, MIN Tianyue. Infrared image super-resolution via improved lightweight GAN[J]. Journal of Chinese Computer Systems, 2022, 43(8): 1711-1717.
[2] [2] MEI Y, FAN Y, ZHOU Y. Image super-resolution with non-local sparse attention[C]//Proc. CVPR, 2021: 3517-3526. DOI: 10.1109/CVPR46437. 2021.00352.
[3] [3] MA Minhui, WANG Hongru, WANG Jia. An underwater image enhancement algorithm based on improved MSRCR-CLAHE fusion[J]. Infrared Technology, 2023, 45(1): 23-32.
[4] [4] ZHANG D, SHAO J, LI X, et al. Remote sensing image super-resolution via mixed high-order attention network[J]. IEEE Trans. Geosci. Remote Sens., 2021, 59(6): 5183-5196.
[5] [5] LIU Yunfeng, ZHAO Hongshan, YANG Jinbiao, et al. Super resolution method for power equipment infrared imaging based on gradient normratio prior[J]. Infrared Technology, 2023, 45(1): 40-48.
[6] [6] DONG C, Loy C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proc. Computer Vision, ECCV, 2014: 184-199. DOI: 10.1007/978-3-319-10593-2_13.
[7] [7] NIE Fengying, HOU Lixia, WAN Liyong. Infrared image enhancement based on adaptive bilateral filtering and directional gradient[J]. Infrared Technology, 2022, 44(12): 1309-1315.
[8] [8] Timofte R, Rothe R, Van Gool L. Seven ways to improve example-based single image super resolution[C]//Proc. CVPR, 2016: 1865-1873. DOI: 10.1109/CVPR.2016.206
[9] [9] Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proc. CVPRW, 2017: 136-144. Doi: 10.1109/CVPRW.2017.151
[10] [10] Bevilacqua M, Roumy A, Guillemot C, et al. Low-complexity singleimage super-resolution based on nonnegative neighbor embedding[C]// Proc. BMVC, 2012: 135-141. DOI: 10.5244/C.26.135.
[11] [11] TANG Y, GONG W, CHEN X, et al. Deep inception-residual Laplacian pyramid networks for accurate single-image super-resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(5): 1514-1528.
[12] [12] CAI J, ZENG H, YONG H, et al. Toward real-world single image superresolution: a new benchmark and a new model[C]//Proc. ICCV, 2019: 3086-3095. DOI: 10.1109/ICCV.2019.00318.
[13] [13] SHI W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proc. CVPR, 2016: 1874-1883. DOI: 10.1109/CVPR. 2016.207.
[14] [14] ZHANG Y, TIAN Y, KONG Y, et al. Residual dense network for image super-resolution[C]//Proc. CVPR, 2018: 2472-2481. DOI: 10.1109/CVPR. 2018.00262.
[15] [15] Esser P, Rombach R, Ommer B. Taming transformers for high-resolution image synthesis[C]//Proc. CVPR, 2021: 12873-12883. DOI: 10.1109/CVPR46437.2021.01268.
[16] [16] JIANG Y, CHANG S, WANG Z. Transgan: two transformers can make one strong GAN[J/OL]. Computer Vision and Pattern Recognition, 2021, 34: https://arxiv.org/abs/2102.07074.
[17] [17] ZHANG K, LIANG J, Van Gool L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proc. ICCV, 2021: 4771-4780. DOI: 10.1109/ICCV48922.2021.00475.
[18] [18] WANG X, XIE L, DONG C, et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data[C]//Proc. ICCVW, 2021: 1905-1914. DOI: 10.1109/ICCVW54120.2021.00217
[19] [19] Ledig C, Theis L, Huszar F, et al. Photo-realistic single image superresolution using a generative adversarial network[C]//Proc. CVPR, 2017: 4681-4690. DOI: 10.1109/CVPR.2017.19.
[20] [20] ZHOU Y, WU G, FU Y, et al. Cross-MPI: cross-scale stereo for image super-resolution using multiplane images[C]//Proc. CVPR, 2021: 14842-14851. DOI: 10.1109/CVPR46437.2021.01460.
[21] [21] IRay Technology Co., Ltd. IRay Optoelectronic Infrared Open Source Database[EB/OL]. [2023-02-26]. http://openai.raytrontek.com/apply/ Super_resolution. html/.
[22] [22] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proc. ECCV, 2018: 286-301. DOI: 10.1007/978-3-030-01234-2_18.
[23] [23] NIU B, WEN W, REN W, et al. Single image super-resolution via a holistic attention network[C]//Proc. ECCV, 2020, 12357: 191-207.
[24] [24] WANG X, YU K, WU S, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]// Proc. ECCV, 2019: 63-79. DOI: 10.1007/978-3-030-11021-5_5.
[25] [25] LIU Z, LIN Y, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proc. ICCV, 2021: 9992-10002. DOI: 10.1109/ICCV48922.2021.00986.
[26] [26] WANG Y, WANG L, WANG H, et al. Resolution-aware network for image super-resolution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(5): 1259-1269.
[27] [27] Andreas Lugmayr, Martin Danelljan, Radu Timofte. Unsupervised learning for real-world super-resolution[J]. ICCV Workshop, 2019, 2(3): 3408-3416.
[28] [28] DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proc. CVPR, 2019: 11057-11066. DOI: 10.1109/CVPR.2019.01132.
[29] [29] Agustsson E, Timofte R. Ntire 2017 challenge on single image superresolution:Dataset and study[C]// Proc. CVPRW, 2017: 126-135. DOI: 10.1109/CVPRW.2017.150.
[30] [30] LIANG J, CAO J, SUN G, et al. SwinIR: Image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844. DOI: 10.1109/ICCVW54120. 2021.00210.
[31] [31] Blau Y, Mechrez R, Timofte R, et al. The 2018 PIRM challenge on perceptual image super-resolution[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018, DOI: 10.1007/978-3-030-11021-5_21
[32] [32] MA C, YANG C Y, YANG X, et al. Learning a no-reference quality metric for single-image super-resolution[J]. Computer Vision and Image Understanding, 2017, 158: 1-16.
Get Citation
Copy Citation Text
LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology, 2024, 46(7): 791