Chinese Journal of Lasers, Volume. 51, Issue 5, 0501003(2024)
Efficient Continuous-Wave Nd∶YVO4/KGW Intra-cavity Raman laser
[1] Casula R, Penttinen J P, Guina M et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation[J]. Optica, 5, 1406-1413(2018).
[2] Pask H M, Dekker P, Mildren R P et al. Wavelength-versatile visible and UV sources based on crystalline Raman lasers[J]. Progress in Quantum Electronics, 32, 121-158(2008).
[3] Zhao H, Lin C H, Jiang C et al. Wavelength-versatile deep-red laser source by intracavity frequency converted Raman laser[J]. Optics Express, 31, 265-273(2022).
[4] Duan Y M, Sun Y L, Zhu H Y et al. YVO4 cascaded Raman laser for five-visible-wavelength switchable emission[J]. Optics Letters, 45, 2564-2567(2020).
[5] Wang J Y, Li S J, Liu T H et al. Research on all solid-state ultraviolet laser at 289.9 nm[J]. Chinese Journal of Lasers, 49, 0701001(2022).
[6] Xue Y Y, Wang C L, Chen M. Research on anti-stokes light of synchronously pumped KGd(WO4)2[J]. Laser & Optoelectronics Progress, 59, 0114001(2022).
[7] Fang C Q, Yu G L, Ding J Y et al. High-efficiency and high-pulse-energy 1197 nm laser based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 2001001(2021).
[8] Lux O, Sarang S, Kitzler O et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain[J]. Optica, 3, 876-881(2016).
[9] Sun Y X, Li M Y, Kitzler O et al. Stable high-efficiency continuous-wave diamond Raman laser at 1178 nm[J]. Laser Physics Letters, 19, 125001(2022).
[10] Fan L, Zhao W Q, Qiao X et al. An efficient continuous-wave YVO4/Nd∶YVO4/YVO4 self-Raman laser pumped by a wavelength-locked 878.9 nm laser diode[J]. Chinese Physics B, 25, 114207(2016).
[11] Li X L, Lee A J, Pask H M et al. Efficient, miniature, CW yellow source based on an intracavity frequency-doubled Nd∶YVO4 self-Raman laser[J]. Optics Letters, 36, 1428-1430(2011).
[12] Lee C Y, Chang C C, Tuan P H et al. Cryogenically monolithic self-Raman lasers: observation of single-longitudinal-mode operation[J]. Optics Letters, 40, 1996-1999(2015).
[13] Lin J, Pask H M. Nd∶GdVO4 self-Raman laser using double-end polarised pumping at 880 nm for high power infrared and visible output[J]. Applied Physics B, 108, 17-24(2012).
[14] Sheng Q, Li R, Lee A J et al. A single-frequency intracavity Raman laser[J]. Optics Express, 27, 8540-8553(2019).
[15] Bonner G M, Lin J P, Kemp A J et al. Spectral broadening in continuous-wave intracavity Raman lasers[J]. Optics Express, 22, 7492-7502(2014).
[16] Sheng Q, Lee A J, Spence D J et al. Wavelength tuning and power enhancement of an intracavity Nd∶GdVO4-BaWO4 Raman laser using an etalon[J]. Optics Express, 26, 32145-32155(2018).
[17] Savitski V G, Friel I, Hastie J E et al. Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers[J]. IEEE Journal of Quantum Electronics, 48, 328-337(2012).
[18] Chen Y F, Chen C M, Lee C C et al. Efficient solid-state Raman yellow laser at 579.5 nm[J]. Optics Letters, 45, 5612-5615(2020).
[19] Chen Y F, Huang H Y, Lee C C et al. High-power diode-pumped Nd∶GdVO4/KGW Raman laser at 578 nm[J]. Optics Letters, 45, 5562-5565(2020).
[20] Chen Y F, Li D, Lee Y M et al. Highly efficient solid-state Raman yellow-orange lasers created by enhancing the cavity reflectivity[J]. Optics Letters, 46, 797-800(2021).
[21] McKay A M, Kitzler O, Mildren R P. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime[J]. Optics Express, 22, 707-715(2014).
Get Citation
Copy Citation Text
Quan Sheng, Jingni Geng, Jinhui Li, Shijie Fu, Wei Shi, Jianquan Yao. Efficient Continuous-Wave Nd∶YVO4/KGW Intra-cavity Raman laser[J]. Chinese Journal of Lasers, 2024, 51(5): 0501003
Category: laser devices and laser physics
Received: Aug. 8, 2023
Accepted: Aug. 24, 2023
Published Online: Mar. 7, 2024
The Author Email: Shijie Fu (shijie_fu@tju.edu.cn), Wei Shi (shiwei@tju.edu.cn)
CSTR:32183.14.CJL231096