Journal of Synthetic Crystals, Volume. 52, Issue 5, 842(2023)
Effect of Annealing Method and Temperature on Structure, Morphology and Photoelectric Properties of CuI Thin Films by Layer by Layer Iodization
[1] [1] GRAUINYT M, BOTTI S, MARQUES M A L, et al. Computational acceleration of prospective dopant discovery in cuprous iodide[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(35): 18839-18849.
[2] [2] KOZHUMMAL R, YANG Y, GDER F, et al. Antisolvent crystallization approach to construction of CuI superstructures with defined geometries[J]. ACS Nano, 2013, 7(3): 2820-2828.
[3] [3] LIN G C, ZHAO F Z, ZHAO Y, et al. Luminescence properties and mechanisms of CuI thin films fabricated by vapor iodization of copper films[J]. Materials, 2016, 9(12): 990.
[4] [4] YU W, BENNDORF G, JIANG Y, et al. Control of optical absorption and emission of sputtered copper iodide thin films[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 15(1): 2000431.
[5] [5] CHINNAKUTTI K K, PANNEERSELVAM V, GOVINDARAJAN D, et al. Optoelectronic and electrochemical behaviour of γ-CuI thin films prepared by solid iodination process[J]. Progress in Natural Science: Materials International, 2019, 29(5): 533-540.
[6] [6] LEE M, YOUN Y, JEONG J K, et al. Origin of p-type conduction in amorphous CuI: a first-principles investigation[J]. Physica Status Solidi (b), 2020, 257(9): 2000218.
[8] [8] TONG F, ZHU Z C, LIU B, et al. Enhanced luminescence of CuI thin film scintillator by reducing Fresnel reflection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 707: 120-122.
[9] [9] MURMU P P, KARTHIK V, LIU Z H, et al. Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power factor in transparent thermoelectric copper iodide[J]. ACS Applied Energy Materials, 2020, 3(10): 10037-10044.
[10] [10] MADUSANKA H T D S, HERATH H M A M C, FERNANDO C A N. High photoresponse performance of self-powered n-Cu2O/p-CuI heterojunction based UV-visible photodetector[J]. Sensors and Actuators A: Physical, 2019, 296: 61-69.
[11] [11] ZHANG L, LEI Y, YANG X G, et al. A facile room temperature iodination route to in situ fabrication of patterned copper-iodide/silicon quasi-bulk-heterojunction thin films for photovoltaic application[J]. Dalton Transactions, 2015, 44(12): 5848-5853.
[12] [12] CROVETTO A, HEMPEL H, RUSU M, et al. Water adsorption enhances electrical conductivity in transparent p-type CuI[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48741-48747.
[13] [13] YANG C, KNEIΒ M, LORENZ M, et al. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12929-12933.
[14] [14] KIM H J, SHIM H S, KIM J W, et al. CuI interlayers in lead phthalocyanine thin films enhance near-infrared light absorption[J]. Applied Physics Letters, 2012, 100(26): 263303.
[15] [15] STORM P, GIERTH S, SELLE S, et al. Evidence for oxygen being a dominant shallow acceptor in p-type CuI[J]. APL Materials, 2021, 9(5): 051101.
[16] [16] BAEK S D, KWON D K, KIM Y C, et al. Violet light-emitting diodes based on p-CuI thin film/n-MgZnO quantum dot heterojunction[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6037-6047.
[17] [17] HEASLEY R, DAVIS L M, CHUA D, et al. Vapor deposition of transparent, p-type cuprous iodide via a two-step conversion process[J]. ACS Applied Energy Materials, 2018, 1(12): 6953-6963.
[18] [18] GRUNDMANN M. Karl Bdeker (1877-1914) and the discovery of transparent conductive materials[J]. Physica Status Solidi (a), 2015, 212(7): 1409-1426.
[19] [19] SCHEIN F L, VON WENCKSTERN H, GRUNDMANN M. Transparent p-CuI/n-ZnO heterojunction diodes[J]. Applied Physics Letters, 2013, 102(9): 092109.
[20] [20] LEE J H, LEE W J, KIM T H, et al. Transparent p-CuI/n-BaSnO3-δ heterojunctions with a high rectification ratio[J]. Journal of Physics: Condensed Matter, 2017, 29(38): 384004.
[21] [21] YAMADA N, INO R, NINOMIYA Y. Truly transparent p-type γ-CuI thin films with high hole mobility[J]. Chemistry of Materials, 2016, 28(14): 4971-4981.
[22] [22] COTA-LEAL M, CABRERA-GERMAN D, SOTELO-LERMA M, et al. Highly-transparent and conductive CuI films obtained by a redirected low-cost and electroless two-step route: chemical solution deposition of CuS2 and subsequent iodination[J]. Materials Science in Semiconductor Processing, 2019, 95: 59-67.
[23] [23] GENG F J, YANG L, DAI B, et al. Enhanced transmittance and mobility of p-type copper iodide thin films prepared at room temperature via a layer-by-layer approach[J]. Surface and Coatings Technology, 2019, 361: 396-402.
[24] [24] YAO J H, ELDER K R, GUO H, et al. Theory and simulation of Ostwald ripening[J]. Physical Review B, Condensed Matter, 1993, 47(21): 14110-14125.
[25] [25] KNEI M, YANG C, BARZOLA-QUIQUIA J, et al. Suppression of grain boundary scattering in multifunctional p-type transparent γ-CuI thin films due to interface tunneling currents[J]. Advanced Materials Interfaces, 2018, 5(6): 1701411.
[27] [27] ZHU B L, ZHAO X Z. Transparent conductive CuI thin films prepared by pulsed laser deposition[J]. Physica Status Solidi (a), 2011, 208(1): 91-96.
Get Citation
Copy Citation Text
GENG Fangjuan, YANG Lei, ZHU Jiaqi. Effect of Annealing Method and Temperature on Structure, Morphology and Photoelectric Properties of CuI Thin Films by Layer by Layer Iodization[J]. Journal of Synthetic Crystals, 2023, 52(5): 842
Category:
Received: Jan. 31, 2023
Accepted: --
Published Online: Jun. 11, 2023
The Author Email: GENG Fangjuan (genfangjuan@163.com)
CSTR:32186.14.