Laser & Optoelectronics Progress, Volume. 58, Issue 14, 1400003(2021)

Advances in Optical Coherence Elastography

Yicheng Wang1, Wenjie Li1, Yanping Huang2, Jinping Feng3, Guoqin Ma1, Qun Shi1, Lin An2, Jingjiang Xu2, Jia Qin2, Haishu Tan2, and Gongpu Lan2、*
Author Affiliations
  • 1School of Mechatronic Engineering and Automation, Foshan University, Foshan, Guangdong 528000, China
  • 2School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China
  • 3Institute of Engineering & Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China;
  • show less
    References(152)

    [1] Greenleaf J F, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues[J]. Annual Review of Biomedical Engineering, 5, 57-78(2003).

    [6] Schmitt J M. OCT elastography: imaging microscopic deformation and strain of tissue[J]. Optics Express, 3, 199-211(1998).

    [10] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [14] Alonso-Caneiro D, Karnowski K, Kaluzny B J et al. Assessment of corneal dynamics with high-speed swept sourceoptical coherence tomography combined with an air puff system[J]. Optics Express, 19, 14188-14199(2011).

    [19] Liang X, Orescanin M, Toohey K S et al. Acoustomotive optical coherence elastography for measuring material mechanical properties[J]. Optics letters, 34, 2894-2896(2009).

    [25] Wijesinghe P, McLaughlin R A, Sampson D D et al. Parametric imaging of viscoelasticity using optical coherence elastography[J]. Physics in Medicine and Biology, 60, 2293-2307(2015).

    [30] Han Z L, Li J S, Singh M et al. Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM[J]. Laser Physics Letters, 13, 035602(2016).

    [37] Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 56, 930-933(1986).

    [40] Jacques S L, Kirkpatrick S J. Acoustically modulated speckle imaging of biological tissues[J]. Optics Letters, 23, 879-881(1998).

    [42] Brandão M M, Fontes A, Barjas-Castro M L et al. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease[J]. European Journal of Haematology, 70, 207-211(2003).

    [43] Fung Y C, Skalak R. Biomechanics mechanical properties of living tissues[J]. Journal of Applied Mechanics, 49, 464-465(1982).

    [47] Righetti R, Ophir J, Ktonas P. Axial resolution in elastography[J]. Ultrasound in Medicine & Biology, 28, 101-113(2002).

    [50] Itoh A, Ueno E, Tohno E et al. Breast disease:clinical application of US elastography for diagnosis[J]. Radiology, 239, 341-350(2006).

    [53] Sun C, Standish B, Yang V X. Optical coherence elastography: current status and future applications[J]. Journal of Biomedical Optics, 16, 043001(2011).

    [60] Razani M, Mariampillai A, Sun C R et al. Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms[J]. Biomedical Optics Express, 3, 972-980(2012).

    [71] Wang S, Li J, Manapuram R K et al. Noncontact measurement of elasticity for the detection of soft-tissue tumors using phase-sensitive optical coherence tomography combined with a focused air-puff system[J]. Optics letters, 37, 5184-5186(2012).

    [73] Li J S, Wang S, Singh M et al. Air-pulse OCE for assessment of age-related changes in mouse cornea in vivo[J]. Laser Physics Letters, 11, 065601(2014).

    [79] Singh M, Li J, Han Z et al. Evaluating the effects of riboflavin/UV-A and rose-bengal/green light cross-linking of the rabbit cornea by noncontact optical coherence elastography[J]. Investigative Ophthalmology & Visual Science, 57, OCT112-OCT120(2016).

    [91] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [99] Izatt J A, Choma M A. Theory of optical coherence tomography[M]. //Drexler W, Fujimoto J G. Optical coherence tomography, biological and medical physics, biomedical engineering, 47-72(2008).

    [100] Li P, Yang S S, Ding Z H et al. Research progressin Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 0207011(2018).

    [101] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography: principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [105] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [107] Chen Y P. Review on optical coherence tomography[J]. Value Engineering, 33, 255-256(2014).

    [110] Lan G, Li G. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography[J]. Scientific Reports, 7, 42353(2017).

    [111] Wang P F, Tong X L, Deng C W et al. High-speed broadband swept source[J]. Laser & Optoelectronics Progress, 56, 201101(2019).

    [114] Li P, Cheng Y, Li P et al. Hybrid averaging offers high-flow contrast by cost apportionment among imaging time, axial, and lateral resolution in optical coherence tomography angiography[J]. Optics Letters, 41, 3944-3947(2016).

    [121] Chen Y, Li Z L, Nan N et al. Speckle noise reduction in fourier domain polarization-sensitive coherence tomography by split-spectrum[J]. Acta Optica Sinica, 38, 0811004(2018).

    [123] Chan R C, Chau A H, Karl W C et al. OCT-based arterial elastography: robust estimation exploiting tissue biomechanics[J]. Optics Express, 12, 4558-4572(2004).

    [125] Hendriks F M, Brokken D, Oomens C W J et al. The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments[J]. Medical Engineering & Physics, 28, 259-266(2006).

    [127] Rogowska J, Patel N, Plummer S et al. Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties[J]. The British Journal of Radiology, 79, 707-711(2006).

    [128] Kirkpatrick S J, Wang R K, Duncan D D. OCT-based elastography for large and small deformations[J]. Optics Express, 14, 11585-11597(2006).

    [130] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005).

    [134] Kling S, Hafezi F. Corneal biomechanics: a review[J]. Ophthalmic and Physiological Optics, 37, 240-252(2017).

    [135] Özkaya N, Nordin M, Goldsheyder D et al. Fundamentals of biomechanics[M](2012).

    [140] Lan G P, Tan H S, An L et al. Multi-beam elastic measuring system and method based on optical switch and microlens array: CN109674441A[P](2019).

    [141] Lan G P, Tu M, Huang Y P et al. Common-path micro-lens array multi-beam optical coherent elasticity measuring system and method: CN109620131A[P](2019).

    [142] Lan G P, Tu M, Chen G J et al. Common-light-path multi-beam optical coherence elasticity measurement system and method: CN109620130A[P](2019).

    [143] Lan G P, Chen G J, Xu J J et al. Multi-beam optical coherence elasticity measuring system and method based on microlens array: CN109645954A[P](2019).

    [144] Lan G P, An L, Xu J J et al. Multi-detection-light-beam optical coherence in-vivo cornea elasticity measurement system and method: CN109620132A[P](2019).

    Tools

    Get Citation

    Copy Citation Text

    Yicheng Wang, Wenjie Li, Yanping Huang, Jinping Feng, Guoqin Ma, Qun Shi, Lin An, Jingjiang Xu, Jia Qin, Haishu Tan, Gongpu Lan. Advances in Optical Coherence Elastography[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1400003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Oct. 15, 2020

    Accepted: Dec. 3, 2020

    Published Online: Jun. 30, 2021

    The Author Email: Gongpu Lan (langongpu@fosu.edu.cn)

    DOI:10.3788/LOP202158.1400003

    Topics