Acta Photonica Sinica, Volume. 54, Issue 4, 0410003(2025)

MSP-YOLACT:Instance Segmentation Model for Multimodal PET/CT Medical Images of Lung Tumors

Tao ZHOU1,3, Wenwen CHAI1,3、*, Yaxing WANG1,3, Kaixiong CHEN1,3, Huiling LU2, and Daozong SHI1,3
Author Affiliations
  • 1School of Computer Science and Engineering,North Minzu University,Yinchuan 750021,China
  • 2School of Medical Information & Engineering,Ningxia Medical University,Yinchuan 750004,China
  • 3Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China
  • show less
    Figures & Tables(15)
    Overall network structure
    Multi-mode feature mixer
    Strengthen feature fusion module
    Multi-scale feature fusion
    Parallel feature enhancement prediction head module
    Global and local feature enhancement module
    Radar map of different module instances segmentation results of MSP-YOLACT model
    Bar graphs of different network instances segmentation results
    The segmentation results
    • Table 1. Global and local feature enhancement module pseudo code module

      View table
      View in Article

      Table 1. Global and local feature enhancement module pseudo code module

      Input:input feature map x

      Output:output feature map yswgc

      1:ys=SelfAttion(x) /*performs self-attention on the input feature map */

      2:ysq=Conv(x)/*perform the convolution operation on ys*/

      3:yswq=depthwise conv(ysq)/*perform a single-channel grouped convolution */

      4:ysq1=AdapAvgpool(ysq) /*ysq performs adaptive averaging pooling*/

      5:ysqp1=AdapAvgpool(yswq)/*yswq performs adaptive average pooling*/

      6:ysq2=BN(Conv1×12(δ(BN(Conv1×11(ysq)))))/*ysq performs 1×1 convolution and normalization */

      7:ysqp2=BN(Conv1×12(δ(BN(Conv1×11(yswq)))))/*yswq performs 1×1 convolution and normalization */

      8:ysqc=ysq1+ysq2 /*ysq1 and ysq2 are added */

      9:ysqpc=ysqp1+ysqp2/*ysqp1 andysqp2  are added */

      10:ysqpcc=[ysqc;ysqpc]/*concatenate ysq with yswq*/

      11:yswgc=ysqpcc+x/* add ysqpcc to x*/

    • Table 2. Experimental designs for different modal correlations

      View table
      View in Article

      Table 2. Experimental designs for different modal correlations

      ExperimentPET/CTCTPETBranch
      Experiment one××1
      Experiment two×2
      Experiment three×2
      Experiment four3
    • Table 3. Ablation experiment design of different modules

      View table
      View in Article

      Table 3. Ablation experiment design of different modules

      Ablation experimentResNet50FPNHeadMFMSFFMMFFDHeadGLFEM
      Experiment one×××××
      Experiment two××××
      Experiment three×××
      Experiment four××
      Experiment five××
      Experiment six×
    • Table 4. Different modal image correlation experiment(IoU=0.50)

      View table
      View in Article

      Table 4. Different modal image correlation experiment(IoU=0.50)

      ModelAPdet/%APseg/%ARdet/%ARseg/%mAPdet/%mAPseg/%
      Experiment one58.3159.7849.0849.1658.2559.45
      Experiment two57.6359.3348.8948.9557.5959.18
      Experiment three58.3959.6248.9749.0858.3159.32
      Experiment four58.5759.8649.1849.2258.4459.53
    • Table 5. Results of ablation experiments(IoU=0.50)

      View table
      View in Article

      Table 5. Results of ablation experiments(IoU=0.50)

      ModelAPdet/%APseg/%ARdet/%ARseg/%mAPdet/%mAPseg/%
      Experiment one58.5759.8649.1849.2258.4459.53
      Experiment two59.7361.8349.3049.3459.5961.70
      Experiment three60.7862.3649.7850.6560.6762.21
      Experiment four61.8562.6850.0251.0561.1262.33
      Experiment five62.3563.6250.6951.5062.2963.17
      Experiment six64.5565.5351.4752.5864.3765.41
    • Table 6. Comparative experimental results(IoU=0.50)

      View table
      View in Article

      Table 6. Comparative experimental results(IoU=0.50)

      ModelAPdet/%APseg/%ARdet/%ARseg/%mAPdet/%mAPseg/%
      YOLACT(ResNet50)58.3159.7849.0849.1658.2559.65
      YOLACT(ResNet101)59.2860.3849.5449.5759.1460.21
      YOLACT ++(ResNet50)62.3363.5850.9851.1262.1563.31
      YOLACT ++(ResNet101)63.1564.5151.1451.5763.0864.43
      Mask Rcnn(ResNet50)62.8563.6551.0251.2762.5563.45
      Mask Rcnn(ResNet101)63.8764.9551.1251.7763.6464.87
      MSP-YOLACT64.5565.5351.4752.5864.3765.41
    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Wenwen CHAI, Yaxing WANG, Kaixiong CHEN, Huiling LU, Daozong SHI. MSP-YOLACT:Instance Segmentation Model for Multimodal PET/CT Medical Images of Lung Tumors[J]. Acta Photonica Sinica, 2025, 54(4): 0410003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 19, 2024

    Accepted: Dec. 20, 2024

    Published Online: May. 15, 2025

    The Author Email: Wenwen CHAI (chaiwenwen@stu.nmu.edu.cn)

    DOI:10.3788/gzxb20255404.0410003

    Topics