Journal of Electronic Science and Technology, Volume. 22, Issue 3, 100264(2024)

Effective approach for conformal subarray design based on maximum entropy of planar mappings

Xiao-Dong Zheng1, Sheng-Teng Shi1、*, Jun Ou-Yang1, Feng Yang1, Qammer Abbasi2, and Abubakar Sharif2
Author Affiliations
  • 1School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
  • 2School of Engineering, University of Glasgow, Scotland, G12 8QQ, UK
  • show less
    Figures & Tables(10)
    Conformal array location schematic.
    Schematic diagram of subarray tiling.
    Array arrangement: (a) conventional spherical array and (b) subarray split spherical array.
    Planar grid mapping.
    Conformal array first-level subarray division: (a) top subarray, (b) side trapezoidal subarray, (c) top view of conformal array arrangement, and (d) aerial view of conformal array arrangement.
    Subarray arrangement of conformal arrays with different entropy: (a) distribution of maximum entropy plane mapping, (b) distribution of suboptimal entropy plane mappings, (c) distribution of minimum entropy plane mapping, (d) top view of maximum entropy subarray arrangement, (e) top view of suboptimal entropy subarray arrangement, (f) top view of minimum entropy subarray arrangement, (g) aerial view of the maximum entropy subarray arrangement, (h) aerial view of suboptimal entropy subarray arrangement, and (i) aerial view of minimum entropy subarray arrangement.
    Array scanning pattern: (a) φ = 0°, θ = 0°; (b) φ = 0°, θ= 30°; (c) φ = 0°, θ = 60°.
    • Table 1. Comparison of parameters between conventional spherical conformal array and subarray split.

      View table
      View in Article

      Table 1. Comparison of parameters between conventional spherical conformal array and subarray split.

      Conventional spherical arraySubarray segmentation conformal array
      Number of units281228
      φ = 0°, θ = 0°gain = 28.57 dBigain = 26.82 dBi
      SLL = −18.26 dBSLL = −16.49 dB
      φ = 0°, θ = 30°gain = 27.73 dBigain = 26.13 dBi
      SLL = −16.63 dBSLL = −15.22 dB
    • Table 2. Functions of and .

      View table
      View in Article

      Table 2. Functions of and .

      Algorithm${c_1}$${c_2}$
      Note: $t$ represents the number of current iteration generations and $T$ represents the total number of iteration generations.
      Group1$ ( - 2.05/T)t + 2.55 $$(1/T)t + 1.25$
      Group2$ ( - 2.05/T)t + 2.55 $$2{t^3}/{T^3} + 0.5$
      Group3$ - 2{t^3}/T + 0.5$$(1/T)t + 1.25$
      Group4$ - 2{t^3}/T + 0.5$$2{t^3}/{T^3} + 0.5$
    • Table 3. Optimization results for different entropy arrangements.

      View table
      View in Article

      Table 3. Optimization results for different entropy arrangements.

      $ H\left( \zeta \right) $5.75435.74985.4025
      φ = 0°, θ = 0°$ {\text{gain}} = 25.61{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 25.43{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 25.56{\text{ }}{\rm{dBi}} $
      $ {\text{SLL}} = - 23.03{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 23.01{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 18.26{\text{ }}{\rm{dB}} $
      φ = 0°, θ = 30°$ {\text{gain}} = 24.55{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 24.30{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 24.20{\text{ }}{\rm{dBi}} $
      $ {\text{SLL}} = - 22.01{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 22.01{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 21.05{\text{ }}{\rm{dB}} $
      φ = 90°, θ = 30°$ {\text{gain}} = 24.72{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 24.69{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 24.92{\text{ }}{\rm{dBi}} $
      $ {\text{SLL}} = - 22.03{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 22.02{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 22.02{\text{ }}{\rm{dB}} $
      φ = 0°, θ = 60°$ {\text{gain}} = 21.21{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 21.70{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 20.83{\text{ }}{\rm{dBi}} $
      $ {SLL} = - 19.19{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 18.02{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 17.11{\text{ }}{\rm{dB}} $
      φ = 90°, θ = 60°$ {\text{gain}} = 21.96{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 28.57{\text{ }}{\rm{dBi}} $$ {\text{gain}} = 22.11{\text{ }}{\rm{dBi}} $
      $ {\text{SLL}} = - 20.02{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 19.03{\text{ }}{\rm{dB}} $$ {\text{SLL}} = - 18.04{\text{ }}{\rm{dB}} $
    Tools

    Get Citation

    Copy Citation Text

    Xiao-Dong Zheng, Sheng-Teng Shi, Jun Ou-Yang, Feng Yang, Qammer Abbasi, Abubakar Sharif. Effective approach for conformal subarray design based on maximum entropy of planar mappings[J]. Journal of Electronic Science and Technology, 2024, 22(3): 100264

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 22, 2024

    Accepted: Jun. 20, 2024

    Published Online: Oct. 11, 2024

    The Author Email: Sheng-Teng Shi (202121020120@std.uestc.edu.cnm)

    DOI:10.1016/j.jnlest.2024.100264

    Topics