Journal of Quantum Optics, Volume. 27, Issue 3, 192(2021)

Cesium Atomic Magnetometer Based on the Cavity-enhanced Magneto-optic Polarization Rotation

ZHAO Jun-xiang1,2、*, ZUO Guan-hua1,2, LI Jing3, ZHANG Yu-chi3, ZHANG Peng-fei1,2, and ZHANG Tian-cai1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(23)

    [1] [1] Uyeda S, Nagao T, Kamogawa M. Short-term earthquake prediction: Current status of seismo-electromagnetics[J]. Tectonophysics, 2009, 470(3-4): 205-213. DOI: 10.1016/j.tecto.2008.07.019.

    [2] [2] Dang H B, Maloof A C, Romalis M V. Ultra-high sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15): 227. DOI: 10.1063/1.3491215.

    [3] [3] Maus S, Rother M, Holme R, et al. First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field[J]. Geophysical Research Letters, 2002, 29(14):47-1-47-4 . DOI: 10.1029/2001GL013685.

    [4] [4] Taylor M A, Bowen W P. Quantum metrology and its application in biology[J]. Physics Reports, 2016, 615: 1-59. DOI: 10.1016/j.physrep.2015.12.002.

    [5] [5] Xia H, Ben-Amar Baranga A, Hoffman D, et al. Magnetoencephalography with an atomic magnetometer[J]. Applied Physics Letters, 2006, 89(21): 664. DOI: 10.1063/1.2392722.

    [6] [6] Sander T H, Preusser J, Mhaskar R, et al. Magnetoencephalography with a chip-scale atomic magnetometer[J]. Biomedical Optics Express, 2012, 3(5): 981-990. DOI: 10.1364/BOE.3.000981.

    [7] [7] Alexandrov E B. Recent Progress in Optically Pumped Magnetometers[J]. Physics Scripta, 2003, 2003(1): 27. DOI: 10.1238/Physica.Topical.105a00027.

    [8] [8] Denisov A Y, Sapunov V A, Rubinstein B. Broadband mode in proton-precession magnetometers with signal processing regression methods[J]. Measurement ence and Technology, 2014, 25(5): 55103. DOI: 10.1088/0957-0233/25/5/055103.

    [9] [9] Arnold F, Naumann M, Lühmann T, et al. Application of SQUIDs to low temperature and high magnetic field measurements—Ultra low noise torque magnetometry[J]. Review of Scientific Instruments, 2018, 89(2): 023901. DOI: 10.1063/1.5011655.

    [10] [10] Budker D, Romalis M. Optical magnetometry[J]. Nature Physics, 2007, (3): 227-234. DOI: 10.1038/nphys566.

    [12] [12] Yang C, Zuo G H, Tian Z Z, et al. Influence of pump intensity on atomic spin relaxation in a vapor cell[J]. Chinese Physics B, 2019, 28(11): 117601. DOI: 10.1088/1674-1056/ab4cde.

    [13] [13] Allred J C, Lyman R N, Kornack T W, et al. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation.[J]. Physical Review Letters, 2002, 89(13): 130801. DOI: 10.1103/PhysRevLett.89.130801.

    [14] [14] Budker D, Gawlik W, Kimball D F, et al. Resonant nonlinear magneto-optical effects in atoms[J]. Review of Modern Physics, 2002, 74(4): 1153-1201. DOI: 10.1103/RevModPhys.74.1153.

    [16] [16] Wolfgramm F, Cere A, Beduini F A, et al. Squeezed-Light Optical Magnetometry[J]. Physical Review Letters, 2010, 105(5): 053601. DOI: 10.1103/PhysRevLett.105.053601.

    [17] [17] Novikova I, Matsko A B, Welch G R. Influence of a buffer gas on nonlinear magneto-optical polarization rotation[J]. Journal of the Optical Society of America B, 2005, 22(1): 44-56. DOI: 10.1364/JOSAB.22.000044.

    [18] [18] Budker D, Yashchuk V, Zolotorev M. Nonlinear Magneto-optic Effects with Ultranarrow Widths[J]. Physical Review Letters, 1998, 81(26): 5788-5791. DOI: 10.1103/PhysRevLett.81.5788.

    [19] [19] Li S, Vachaspati P, Sheng D, et al. Optical rotation in excess of 100 rad generated by Rb vapor in a multipass cell[J]. Physical Review A, 2011, 84(6): 61403-61403. DOI: 10.1103/physreva.84.061403.

    [20] [20] Ling H Y. Theoretical investigation of transmission through a Faraday-active Fabry-Perot étalon[J]. Journal of the Optical Society of America A, 1994, 112(2): 754-758. DOI: 10.1364/josaa.11.000754.

    [21] [21] Balabas M V, Vasilakis G, Shen H, et al. Cavity enhanced quantum limited magnetometry[C]. Quantum Information and Measurement. 2014.

    [22] [22] Crepaz H, Ley L Y, Dumke R. Cavity enhanced atomic magnetometry[J]. Rep, 2015, 5. DOI: 10.1038/srep15448.

    [23] [23] Dmitry B, Kimball D F, DeMille D P. Atomic physics: an exploration through problems and solutions[M]. Oxford University Press, 2008.

    [24] [24] Budker D, Kimball D F, Yashchuk V V, et al. Nonlinear magneto-optical rotation with frequency-modulated light[J]. Physical Review A, 2002, 65(5): 164-164. DOI: 10.1103/PhysRevA.65.055403.

    [25] [25] Gawlik W, Krzemien L, Pustelny S, et al. Nonlinear Magneto-Optical Rotation with Amplitude-Modulated Light: AMOR[J]. Applied Physics Letters, 2006, 88(13): 280. DOI:10.1063/1.2190457.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Jun-xiang, ZUO Guan-hua, LI Jing, ZHANG Yu-chi, ZHANG Peng-fei, ZHANG Tian-cai. Cesium Atomic Magnetometer Based on the Cavity-enhanced Magneto-optic Polarization Rotation[J]. Journal of Quantum Optics, 2021, 27(3): 192

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 16, 2021

    Accepted: --

    Published Online: Nov. 18, 2021

    The Author Email: ZHAO Jun-xiang (446722310@qq.com)

    DOI:10.3788/jqo20212703.0201

    Topics