Optical Technique, Volume. 49, Issue 3, 354(2023)

Polarization image fusion algorithm based on dense gradient generative adversarial networks

ZHANG Hao*, DUAN Jin, LIU Ju, GAO Meiling, HAO Youfei, and CHEN Guangqiu
Author Affiliations
  • [in Chinese]
  • show less
    References(16)

    [2] [2] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]∥Advances in Neural Information Processing Systems. Montreal, Quebec, Canada: MIT Press,2014:2672-2680.

    [3] [3] Ma J, Yu W, Liang P, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion,2019,48:11-26.

    [4] [4] Yang Z, Chen Y, Le Z, et al. GANFuse: A novel multi-exposure image fusion method based on generative adversarial networks[J]. Neural Computing and Applications,2021,33:6133-6145.

    [5] [5] Zhang H, Le Z, Shao Z, et al. MFF-GAN: An unsupervised generative adversarial network with adaptive and gradient joint constraints for multi-focus image fusion[J]. Information Fusion,2020,66:40-53.

    [6] [6] Zhang J, Shao J, Chen J, et al. PFNet: An unsupervised deep network for polarization image fusion[J]. Optics Letters,2020,45(6):1507-1510.

    [7] [7] Zhang J, Shao J, Chen J, et al. Polarization image fusion with self-learned fusion strategy[J]. Pattern Recognition,2021,118(22):108045.

    [8] [8] Wang T, Cheng J, Liu T, et al. Visible light polarization image fusion based on dense connection generative adversarial network[C]∥2021 International Conference on Advanced Algorithms and Signal Image Processing. Hangzhou, China:IOP,2021:27-29.

    [10] [10] Zhu P, Liu L, Zhou X. Infrared polarization and intensity image fusion based on bivariate BEMD and sparse representation[J]. Multimedia Tools and Applications,2021,80:4455-4471.

    [13] [13] Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE,2017:2261-2269.

    [14] [14] Xiang K, Yang K, Wang K. Polarization-driven semantic segmentation via efficient attention-bridged fusion[J]. Optics Express,2021,29:4802-4820.

    [15] [15] Li H, Wu X. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing,2018,28(5):2614-2623.

    [16] [16] Lin T, Maire M, Belongie S, et al. Microsoft coco: Common objects in context[C]∥European Conference on Computer Vision. Zurich, Switzerland: Springer Cham,2014:740-755.

    [17] [17] Ma J, Chen C, Li C, et al. Infrared and visible image fusion via gradient transfer and total variation minimization[J]. Information Fusion,2016,31:100-109.

    [18] [18] Burt P, Adelson E. The laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications,1983,31(4):532-540.

    [19] [19] Toet A. Image fusion by a ration of low-pass pyramid[J]. Pattern Recognition Letters,1989,9(4):245-253.

    [20] [20] Lewis J, O’Callaghan R, Nikolov S, et al. Pixel-and region-based image fusion with complex wavelets[J]. Information Fusion,2007,8(2):119-130.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Hao, DUAN Jin, LIU Ju, GAO Meiling, HAO Youfei, CHEN Guangqiu. Polarization image fusion algorithm based on dense gradient generative adversarial networks[J]. Optical Technique, 2023, 49(3): 354

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 18, 2022

    Accepted: --

    Published Online: Nov. 26, 2023

    The Author Email: Hao ZHANG (zhanghao2017@126.com)

    DOI:

    CSTR:32186.14.

    Topics