Acta Optica Sinica, Volume. 38, Issue 8, 0815023(2018)

Pulmonary Fissure Detection Based on Shape Features

Yuanyuan Peng* and Changyan Xiao
Author Affiliations
  • College of Electrical and Information Engineering, Hunan University, Changsha, Hunan 410000, China
  • show less
    Figures & Tables(8)
    Flow chart of pulmonary fissure detection
    (a) DoS filter analysis; (b) DoS kernel orientation
    (a) Original image; (b) θmax; (c) θmin
    (a) Pulmonary fissure enhancement; (b) sagittal plane; (c) coronal plane; (d) axial plane
    Treating processes. (a) Pulmonary fissure enhancement; (b) multi-plate processing; (c) pulmonary fissure identification
    Pulmonary fissure segmentation. (a) Pulmonary fissure identification; (b) surface curvature; (c) pulmonary fissure segmentation; (d) the black rectangle is zoomed for investigation in Fig. (b)
    (a)(g) Manual reference; (b)(h) proposed method; (c)(i) DoS method; (d)(j) Fissureness method; (e)(k) Wiemker method; (f)(l) Klinder method
    Quantitative evaluation
    Tools

    Get Citation

    Copy Citation Text

    Yuanyuan Peng, Changyan Xiao. Pulmonary Fissure Detection Based on Shape Features[J]. Acta Optica Sinica, 2018, 38(8): 0815023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Mar. 19, 2018

    Accepted: May. 29, 2018

    Published Online: Sep. 6, 2018

    The Author Email:

    DOI:10.3788/AOS201838.0815023

    Topics