Laser & Optoelectronics Progress, Volume. 58, Issue 12, 1210014(2021)

Matching Multi-Scale Features and Prediction Tasks for Real-Time Object Detection

Hongjie Du*... Hanqing Sun, Jiale Cao and Yanwei Pang |Show fewer author(s)
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    Figures & Tables(13)
    Existing object detection algorithms using convolution feature to complete prediction task. (a) CenterNet detection model; (b) detection model based on multi-scale feature for total task prediction; (c) proposed MFT detection model
    The proposed MFT network structure
    MSH module architecture
    MRFH module architecture
    Architectures of different feature fusion methods
    Visual effect comparison of CenterNet and MFT detector on COCO dataset
    Visual effect comparison of CenterNet and MFT detector on COCO dataset
    • Table 1. Comparison of different object detection algorithms on the COCO dataset

      View table

      Table 1. Comparison of different object detection algorithms on the COCO dataset

      ConditionMethodBackboneSizeV /(frame·s-1)mAP /%APS /%APM /%APL /%
      V>60 frame/sSSD[8]VGG16300×30060.623.25.323.239.6
      SSD[8]MobileNetV2512×512110.722.15.816.943.6
      CenterNet[14]Res18512×512128.528.110.131.542.6
      TTFNet[30]Res18512×512112.328.111.829.541.5
      MTFRes18512×51294.531.514.935.344.3
      V<60 frame/sFCOS[15]Res181330×80020.826.913.928.936
      CenterNet[14]Res101512×51245.134.610.131.542.6
      SSD[8]VGG16512×51223.426.89.028.941.9
      YOLOv3[29]D53608×60830.333.018.325.441.9
      EfficientDet[28]EfficientNet512×51247.133.812.434.754.4
      MTFRes50512×51254.935.312.934.344.3
    • Table 2. Ablation results of different proposed modules on the PASCAL VOC dataset

      View table

      Table 2. Ablation results of different proposed modules on the PASCAL VOC dataset

      ModuleECFMSHMRFHLWSmAP /%
      CenterNet (baseline)70.64
      +ECF72.28
      +MSH73.16
      +MRFH73.86
      MFT74.09
    • Table 3. Reasonability of MSH module and MRFH module

      View table

      Table 3. Reasonability of MSH module and MRFH module

      ModuleMSHMRFHMSH-mismatchMRFH-mismatchmAP /%
      All-mismatch73.01
      MSH-mismatch73.18
      MFT73.86
    • Table 4. Complementary experiment of MRFH and MSH

      View table

      Table 4. Complementary experiment of MRFH and MSH

      MSHMRFHmAP /%ΔmAP
      ××72.280
      ×73.16+0.88
      ×73.44+1.16
      73.86+1.58
    • Table 5. Ablation results of different scale features reused by MSH module

      View table

      Table 5. Ablation results of different scale features reused by MSH module

      ModuleLargeMediumSmallmAP/%
      MSH-L73.44
      MSH-LM73.51
      MSH73.86
    • Table 6. Experiment of different feature fusion methods

      View table

      Table 6. Experiment of different feature fusion methods

      Fusion methodw1w2w3w4mAP /%
      Simple average1/41/41/41/473.86
      Learned weight0.28940.25510.32690.330774.09
    Tools

    Get Citation

    Copy Citation Text

    Hongjie Du, Hanqing Sun, Jiale Cao, Yanwei Pang. Matching Multi-Scale Features and Prediction Tasks for Real-Time Object Detection[J]. Laser & Optoelectronics Progress, 2021, 58(12): 1210014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Sep. 25, 2020

    Accepted: Oct. 21, 2020

    Published Online: Jun. 18, 2021

    The Author Email: Hongjie Du (duhongjie@tju.edu.cn)

    DOI:10.3788/LOP202158.1210014

    Topics