Laser & Infrared, Volume. 54, Issue 8, 1300(2024)
Hyperspectral image classification based on multi-scale graph convolution
[3] [3] Adams J B, Sabol D E, Kapos V, et al. Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon[J]. Remote Sensing of Environment, 1995, 52(2): 137-154.
[4] [4] Tarabalka Y, Fauvel M, Chanussot J, et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7: 736-740.
[5] [5] Abe B T, Olugbara O O, Marwala T. Experimental comparison of support vector machines with random forests for hyperspectral image land cover classification[J]. Journal of Earth System Science, 2014, 123(4): 779-790.
[6] [6] Chen Y, Jiang H, Li C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251.
[7] [7] Meng Z, Zhao F, Liang M, et al. Deep residual involution network for hyperspectral image classification[J]. Remote Sensing, 2021, 13(16): 3055.
[8] [8] Wang W, Dou S, Jiang Z, et al. A fast dense spectral-spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 2018, 10(7): 1068.
[9] [9] Zhong Z, Li Y, Ma L, et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-15.
[11] [11] Liu Q, Xiao L, Yang J, et al. CNN-enhanced graph convolutional network with pixel and superpixel-level feature fusion for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10): 8657-8671.
[12] [12] Ding Y, Zhao X, Zhang Z, et al. Graph sample and aggregate-attention network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[13] [13] Wan S, Gong C, Zhong P, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3162-3177.
[14] [14] Ling J, Li L, Wang H. Improved fusion of spatial information into hyperspectral classification through the aggregation of constrained segment trees: segment forest[J]. Remote Sensing, 2021, 13(23): 4816.
[15] [15] Zhong Z L, Li J, Luo Z M, et al. Spectral-spatial residual network for hyperspectral image classification: a 3D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858.
[16] [16] Wan S, Gong C, Zhong P, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3162-3177.
[17] [17] Hu H, Yao M, He F, et al. Graph neural network via edge convolution for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[18] [18] Roy S K, Krishna G, Dubey S R, et al. HybridSN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281.
[19] [19] Makantasis K, Karantzalos K, Doulamis A, et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015: 4959-4962.
Get Citation
Copy Citation Text
WEN Xin, LI Lu, FAN Jun-fang, HU Zhi-feng, ZHOU Feng, WU Ya-ping. Hyperspectral image classification based on multi-scale graph convolution[J]. Laser & Infrared, 2024, 54(8): 1300
Category:
Received: Sep. 25, 2023
Accepted: Apr. 30, 2025
Published Online: Apr. 30, 2025
The Author Email: LI Lu (20192380@bistu.edu.cn)