Acta Optica Sinica, Volume. 45, Issue 14, 1420006(2025)

Recent Research Advances of On‐Chip Optical Nonlinear Activation Function Devices (Invited)

Ruizhe Liu, Zijia Wang, and Hongtao Lin*
Author Affiliations
  • College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, Zhejiang , China
  • show less
    Figures & Tables(13)
    Introduction to deep learning neural network. (a) Architecture of deep learning neural network; (b) three classical nonlinear activation functions: Sigmoid function, hyperbolic tangent (Tanh) function, and rectified linear unit (ReLU) function; (c) typical applications of several deep learning neural networks; (d) performance comparison between networks with and without activation functions in classification tasks
    Technical pathways for optically activated functional devices. The green section presents all-optical activation function implementation schemes, categorized based on different material systems; the blue section illustrates electro-optical activation function implementation schemes, classified according to different detection approaches
    Electro-optical activation functions based on detection-modulation schemes. (a) Activation function scheme using photodiodes for optical signal detection and EAM for modulation[66]; (b) activation function scheme employing photodiodes for optical signal detection and MZI modulators for modulation[70]; (c) activation function scheme utilizing photodiodes for optical signal detection and microring resonator modulators for modulation[34]
    Activation function scheme using MoS2 optoelectronic RAM switches combined with anelectrical control unit for optical signal detection and MZI modulators for modulation[71]. (a) Schematic diagram of the activation function structure; (b) implemented activation function curves
    Integrated detection-modulation activation function scheme implemented using graphene-silicon heterogeneously integrated microring resonators[73]. (a) Neural network architecture employing the integrated detection-modulation activation function scheme; (b)(c) relationships of photocurrent and transmittance versus input optical power and bias voltage for the two activation function devices; (d) five activation functions derived from the two devices, corresponding to different photocurrent contour levels
    All-optical nonlinear activation functions implemented using nonlinear effects in silicon materials. (a) All-optical nonlinear activation function achieved through free-carrier dispersion effect[80]; (b) nonlinear activation function realized via Kerr effect through inverse design[83]; (c) nonlinear activation function implemented utilizing free-carrier absorption and two-photon absorption effects[84]
    All-optical nonlinear activation functions implemented using nonlinear effects in germanium (Ge) materials. (a) Photodiode-type nonlinear activation function[88]; (b) waveguide-coupled-type nonlinear activation function[89]; (c) microring resonator-type nonlinear activation function[90]
    All-optical nonlinear activation function implemented using second-order nonlinear effects in lithium niobate (LiNbO₃) materials[91]
    All-optical nonlinear activation functions implemented using nonlinear effects in III-V semiconductor materials. (a) Nonlinear activation function realized by semiconductor optical amplifiers[95]; (b) nonlinear activation function achieved using semiconductor lasers[93]
    All-optical nonlinear activation function implemented using nonlinear effects in erbium-doped optical amplifiers [96]
    All-optical nonlinear activation functions implemented using nonlinear effects in phase-change materials. (a) Nonlinear activation function realized through pulsed optical excitation of GST phase transition[30]; (b) nonlinear activation function achieved via spatially modulated optical excitation of GST phase transition[99]; (c) nonlinear activation function implemented using continuous-wave optical excitation of VO₂ phase transition[97]
    All-optical nonlinear activation functions implemented using nonlinear effects in two-dimensional materials. (a) Nonlinear activation function realized via graphene saturable absorption effect in waveguide devices[105]; (b) nonlinear activation function achieved through graphene saturable absorption effect in plasmonic devices[106]; (c) nonlinear activation function implemented utilizing graphene saturable absorption effect in silicon-plasmonic hybrid devices[107]; (d) nonlinear activation function demonstrated by MXene saturable absorption effect in waveguide devices[108]; (e) nonlinear activation function established via MoTe₂ saturable absorption effect in glass waveguide devices[109]
    • Table 1. A summary of the on-chip optical activation function devices reviewed in this paper

      View table

      Table 1. A summary of the on-chip optical activation function devices reviewed in this paper

      Implementation

      method

      Wavelength /

      nm

      Bias

      voltage /

      V

      Threshold

      power

      Reconfigu-rability

      Response

      time /

      ns

      Device

      size /

      μm2

      NAF

      curves

      Task

      demon-

      stration

      Experiment/

      Simulation

      Accuracy /%

      (Architecture)

      Electro-optic nonlinear activation function
      PD+MRR3415500.80.06 mWYes0.10Multi-AFsVowel classificationExperiment92.50(FC)
      PD+MRR/MZI6315501.50.60 mWYes

      >100×

      200

      ReLU/SigmoidMNISTSimulation95.71(CNN)
      PD+MRR6415500.92.50 mWNo0.57>90×30ReLUHandwritten letters classificationExperiment93.80(CNN)
      PD+MRR651550Yes1500006AFs
      PD+EAM66155025 mWNo20×0.8Inverse SigmoidMNISTSimulation98(FC)
      PD+EAM671550207 mWNo20×0.5ReLUMNISTSimulation95(FC)
      PD+MZI70155012.80.60 mWYesReLU/SigmoidMNISTSimulation93(FC)
      ECU+ORS+MZI71405/52027 mWYesSigmoid/Softplus/Clamped ReLUMNISTSimulation91.60(FC)
      MRR PD/modulator73200010.0080 mWYes80×80Multi-AFsMNIST/ CIFAR-10Simulation>95/>70(CNN)
      All-optic nonlinear activation function
      SOI TO FCD MRR+MZI80155025 mWYes2.50575×48Sigmoid/Softplus/Clamped ReLUXOR classification/MNISTSimulation100/94(FC)
      Si3N4 Kerr MRR+MZI811550Yes0.10ReLU/Inverse ReLU/Quadratic
      SOI Kerr inverse design83155002.90 mWNo5×5MNISTSimulation93.25(FC)
      SOI TO TPA Kerr FCA FCD MRR84155000.080‒2.95 mWYes1.20×10420×204AFsMNISTSimulation98(CNN)
      Ge-Si PD FCA88155041.10 mWNo0.05030×8Clamped ReLUMNISTExperiment97.30(FC)
      Ge-Si WG FCA90155005.10 mWNo14.3032×2Clamped ReLUMNISTSimulation96.80(FC)
      Ge-Si MRR FCA89155000.74 mWYes10430×15Radial basis/ReLU/ELUMNISTSimulation94.80(FC)
      LiNbO3 WG SHG DOPA91

      I:1045

      O:2090

      016 fJNo7.50×10-52500×1.7ReLUMNISTSimulation99.13(CNN)
      SOA-MZI+XGM-WC9515508.09 mWNo0.40Sigmoid
      Fano cavity laser930600 fJNo0.30×10-3100Sigmoid

      Er∶Si3N4

      amplifier96

      15500.070 mWNo1200×3600Clamped ReLU
      PCM GST MRR30155005×105 fJNo200100×100ReLULanguage recognitionExperiment99.60(FC)
      PCM GST MRR9915500

      5.586×

      1012 fJ

      No1SigmoidMNISTSimulation94.50(FC)

      PCM VO2

      Si3N4 WG97

      Broad00.50 mWNo5×1035ELUCIFAR-10Simulation

      80‒85

      (CNN)

      Graphene+WG1051550010 mWNo0.09040×10Clamped ReLUEigenvalues of a matrixExperiment78.8(FC)
      Graphene+plasmonic WG1061550035 fJNo2.60×10-410×10ReLU
      Graphene+plasmonic/Si WG107155005.5 mWNo0.094100ReLUMNISTSimulation92.58(CNN)

      2D MXene+

      Si WG108

      1310/155000.05 mWNo4×50ReLUMNISTSimulation99.10(FC)
      2D MoTe2+glass WG109Broad0

      9.4×

      10-4 mW

      No4.80×10-450Clamped ReLUMNIST/ CIFAR-10Simulation97.60/94.60(FC)
    Tools

    Get Citation

    Copy Citation Text

    Ruizhe Liu, Zijia Wang, Hongtao Lin. Recent Research Advances of On‐Chip Optical Nonlinear Activation Function Devices (Invited)[J]. Acta Optica Sinica, 2025, 45(14): 1420006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics in Computing

    Received: Apr. 15, 2025

    Accepted: Jun. 30, 2025

    Published Online: Jul. 22, 2025

    The Author Email: Hongtao Lin (hometown@zju.edu.cn)

    DOI:10.3788/AOS250928

    CSTR:32393.14.AOS250928

    Topics